Mathematical investigations of resonances in optical micro-resonators

Abstract : We investigate the computation of whispering gallery modes in optical micro-resonators. From a mathematical point of view, this leads to the computation of the complex resonances of dielectric micro-cavities in the sense of the scattering theory. We consider here the 2D case where the scattering problem consists of the Helmholtz equation in R 2 with discontinuities of the normal derivative at the cavity boundary and with the outgoing wave condition at infinity. The computational domain is made finite by the use of perfectly matched layers (PML) compatible with the outgoing wave condition, which results in a non self-adjoint problem. Discretization is then achieved by the Finite Element Method. We show theoretical and numerical results for 2D geometries of the micro-cavity.
Type de document :
Communication dans un congrès
ICCEM 2018 - IEEE International Conference on Computational Electromagnetics , Mar 2018, Chengdu, China
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01715438
Contributeur : Stéphane Balac <>
Soumis le : jeudi 22 février 2018 - 16:38:06
Dernière modification le : mercredi 20 juin 2018 - 01:19:33
Document(s) archivé(s) le : mercredi 23 mai 2018 - 14:26:57

Fichier

communication_iccem18.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01715438, version 1

Citation

Zoïs Moitier, Stéphane Balac, Eric Darrigrand, Monique Dauge, Yvon Lafranche, et al.. Mathematical investigations of resonances in optical micro-resonators. ICCEM 2018 - IEEE International Conference on Computational Electromagnetics , Mar 2018, Chengdu, China. 〈hal-01715438〉

Partager

Métriques

Consultations de la notice

191

Téléchargements de fichiers

65