Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Optimal Anchoring of a Urea-based Foldamer Inhibitor of ASF1 Histone Chaperone Through Backbone Plasticity

Abstract :

Sequence-specific oligomers with predictable folding patterns, i.e. foldamers provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may significantly contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α-helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a striking plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with non-peptide oligourea segments is the resistance to proteolysis in human plasma which was highly improved compared to the cognate α-helical peptide.

Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-03041508
Contributor : Gilles Guichard <>
Submitted on : Friday, December 4, 2020 - 11:45:37 PM
Last modification on : Friday, February 12, 2021 - 3:34:26 AM

File

Mbianda Bakail ChemRxiv_full_O...
Files produced by the author(s)

Identifiers

Citation

Johanne Mbianda, May Bakail, Christophe André, Gwenaëlle Moal, Marie Perrin, et al.. Optimal Anchoring of a Urea-based Foldamer Inhibitor of ASF1 Histone Chaperone Through Backbone Plasticity. 2020. ⟨hal-03041508⟩

Share

Metrics

Record views

146

Files downloads

50