K. Zaghib, A. Mauger, and C. M. Julien, Rechargeable Lithium Batteries for Energy Storage in Smart Grids, Chap. 12 in: Rechargeable Lithium Batteries, 2015.

D. Peramunage and S. Licht, A Solid Sulfur Cathode for Aqueous Batteries, Science, vol.261, issue.5124, p.1029, 1993.
DOI : 10.1126/science.261.5124.1029

X. Ji and L. F. Nazar, Advances in Li???S batteries, Journal of Materials Chemistry, vol.182, issue.19, p.9821, 2010.
DOI : 10.1002/anie.200907324

L. Nazar, M. Cuisinier, and Q. Pang, Lithium-sulfur batteries, MRS Bulletin, vol.24, issue.05, p.436, 2014.
DOI : 10.1039/c3ee43357a

G. Xu, B. Ding, J. Pan, P. Nie, L. Shen et al., High performance lithium???sulfur batteries: advances and challenges, J. Mater. Chem. A, vol.160, issue.98, p.12662, 2014.
DOI : 10.1149/2.032311jes

D. Bresser, S. Passerini, and B. Scrosati, Recent progress and remaining challenges in sulfur-based lithium secondary batteries ??? a review, Chemical Communications, vol.146, issue.98, p.10545, 2013.
DOI : 10.1016/j.jpowsour.2005.03.021

D. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li et al., Carbon???sulfur composites for Li???S batteries: status and prospects, Journal of Materials Chemistry A, vol.3, issue.33, p.9382, 2013.
DOI : 10.1039/c2ra22808d

H. Yamin and E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell, Journal of Power Sources, vol.9, issue.3, p.281, 1983.
DOI : 10.1016/0378-7753(83)87029-3

K. Kumaresan, Y. Mikhaylik, and R. E. White, A Mathematical Model for a Lithium???Sulfur Cell, Journal of The Electrochemical Society, vol.150, issue.8, p.576, 2008.
DOI : 10.1149/1.2108398

B. M. Rao and J. A. Shropshire, Effect of Sulfur Impurities on Li???TiS[sub 2] Cells, Journal of The Electrochemical Society, vol.128, issue.5, p.942, 1981.
DOI : 10.1149/1.2127579

Y. V. Mikhaylik and J. R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System, Journal of The Electrochemical Society, vol.150, issue.11, p.1969, 2004.
DOI : 10.1149/1.1806394

V. Knap, D. Stroe, M. Swierczynski, R. Purkayastha, K. Propp et al., A self-discharge model of Lithium-Sulfur batteries based on direct shuttle current measurement, Journal of Power Sources, vol.336, p.325, 2016.
DOI : 10.1016/j.jpowsour.2016.10.087

Y. Diao, K. Xie, S. Xiong, and X. Hong, Analysis of Polysulfide Dissolved in Electrolyte in Discharge-Charge Process of Li-S Battery, Journal of The Electrochemical Society, vol.159, issue.4, p.421, 2012.
DOI : 10.1149/1.3148721

M. U. Patel, R. Demir-cakan, M. Morcrette, J. M. Tarascon, M. Gaberscek et al., Li-S Battery Analyzed by UV/Vis in Operando Mode, ChemSusChem, vol.39, issue.7, p.1177, 2013.
DOI : 10.1016/0022-1902(77)80198-X

J. Wang, L. Liu, Z. Ling, J. Yang, C. Wan et al., Polymer lithium cells with sulfur composites as cathode materials, Electrochimica Acta, vol.48, issue.13, p.1861, 2003.
DOI : 10.1016/S0013-4686(03)00258-5

Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian et al., Improving the Performance of Lithium???Sulfur Batteries by Conductive Polymer Coating, ACS Nano, vol.5, issue.11, p.9187, 2011.
DOI : 10.1021/nn203436j

X. Zhou, J. Xie, J. Yang, Y. Zou, J. Tang et al., Improving the performance of lithium???sulfur batteries by graphene coating, Journal of Power Sources, vol.243, p.993, 2013.
DOI : 10.1016/j.jpowsour.2013.05.050

C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, and Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, The Journal of Physical Chemistry C, vol.113, issue.11, p.4712, 2009.
DOI : 10.1021/jp809473e

X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao et al., Optimization of mesoporous carbon structures for lithium???sulfur battery applications, Journal of Materials Chemistry, vol.122, issue.41, p.16603, 2011.
DOI : 10.1021/ja002261e

G. He, X. L. Ji, and L. Nazar, High ???C??? rate Li-S cathodes: sulfur imbibed bimodal porous carbons, Energy & Environmental Science, vol.279, issue.8, p.2878, 2011.
DOI : 10.1126/science.279.5350.548

C. Liang, N. J. Dudney, and J. Y. Howe, Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery, Chemistry of Materials, vol.21, issue.19, p.4724, 2009.
DOI : 10.1021/cm902050j

D. Wang, A. Fu, H. Li, Y. Wang, P. Guo et al., Mesoporous carbon spheres with controlled porosity for high-performance lithium???sulfur batteries, Journal of Power Sources, vol.285, p.469, 2015.
DOI : 10.1016/j.jpowsour.2015.03.135

C. Wang, J. J. Chen, Y. N. Shi, M. S. Zheng, and Q. F. Dong, Preparation and performance of a core???shell carbon/sulfur material for lithium/sulfur battery, Electrochimica Acta, vol.55, issue.23, p.7010, 2010.
DOI : 10.1016/j.electacta.2010.06.019

G. Ren, S. Li, Z. Fan, J. Warzywoda, and Z. Fan, Soybean-derived hierarchical porous carbon with large sulfur loading and sulfur content for high-performance lithium???sulfur batteries, J. Mater. Chem. A, vol.71, issue.42, p.16507, 2016.
DOI : 10.1016/j.carbon.2014.01.017

Y. Wei, Y. Tao, C. Zhang, J. Wan, W. Qiao et al., Layered carbide-derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries, Electrochimica Acta, vol.188, p.385, 2016.
DOI : 10.1016/j.electacta.2015.12.012

P. Zhu, J. Song, D. Lv, D. Wang, C. Jaye et al., Mechanism of Enhanced Carbon Cathode Performance by Nitrogen Doping in Lithium???Sulfur Battery: An X-ray Absorption Spectroscopic Study, The Journal of Physical Chemistry C, vol.118, issue.15, p.7765, 2014.
DOI : 10.1021/jp4123634

H. Wu, J. Mou, L. Zhou, Q. Zheng, N. Jiang et al., Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries, Electrochimica Acta, vol.212, p.1021, 2016.
DOI : 10.1016/j.electacta.2016.07.153

F. Chen, J. Yang, T. Bai, B. Long, and X. Zhou, Biomass waste-derived honeycomb-like nitrogen and oxygen dual-doped porous carbon for high performance lithium-sulfur batteries, Electrochimica Acta, vol.192, p.99, 2016.
DOI : 10.1016/j.electacta.2016.01.192

S. Zheng, F. Yi, Z. Li, Y. Zhu, Y. Xu et al., Copper-Stabilized Sulfur-Microporous Carbon Cathodes for Li-S Batteries, Advanced Functional Materials, vol.5, issue.26, p.4156, 2014.
DOI : 10.1007/s12274-012-0257-7

X. Li, J. Liang, K. Zhang, Z. Hou, W. Zhang et al., /C (x ??? 0.1) composites promise better lithium???sulfur batteries in a carbonate-based electrolyte, Energy Environ. Sci., vol.26, issue.11, p.3181, 2015.
DOI : 10.1002/adma.201304010

URL : https://hal.archives-ouvertes.fr/in2p3-00166974

B. Ding, C. Yuan, L. Shen, G. Xu, P. Nie et al., Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as a High-Performance Cathode for Lithium-Sulfur Batteries, Chemistry - A European Journal, vol.19, issue.3, p.1013, 2013.
DOI : 10.1039/b906293a

S. Chung, Low-cost, porous carbon current collector with high sulfur loading for lithium???sulfur batteries, Electrochemistry Communications, vol.38, p.91, 2013.
DOI : 10.1016/j.elecom.2013.11.008

S. Chung and A. Manthiram, Nano-cellular carbon current collectors with stable cyclability for Li???S batteries, Journal of Materials Chemistry A, vol.189, issue.34, p.9590, 2013.
DOI : 10.1016/j.jpowsour.2008.10.033

Z. Li, Y. Jiang, L. Yuan, Z. Yi, C. Wu et al., A Highly Ordered Meso@Microporous Carbon-Supported Sulfur@Smaller Sulfur Core???Shell Structured Cathode for Li???S Batteries, ACS Nano, vol.8, issue.9, p.9295, 2014.
DOI : 10.1021/nn503220h

Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu et al., Insight into the Electrode Mechanism in Lithium-Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode, Advanced Energy Materials, vol.196, issue.7, p.1301473, 2014.
DOI : 10.1016/j.jpowsour.2011.08.027

S. Chen, B. Sun, X. Xie, A. K. Mondal, X. Huang et al., Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium???sulfur batteries with long cycle life, Nano Energy, vol.16, pp.268-280, 2015.
DOI : 10.1016/j.nanoen.2015.05.034

B. Zhang, X. Qin, G. R. Li, and X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science, vol.49, issue.10, p.1531, 2010.
DOI : 10.1002/anie.200907324

Y. An, Q. Zhu, L. Hu, S. Yu, Q. Zhao et al., A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium???sulfur batteries, J. Mater. Chem. A, vol.133, issue.40, p.15605, 2016.
DOI : 10.1021/ja206955k

Y. Xie, L. Fang, H. Cheng, C. Hu, H. Zhao et al., Biological cell derived N-doped hollow porous carbon microspheres for lithium???sulfur batteries, J. Mater. Chem. A, vol.17, issue.40, p.15612, 2016.
DOI : 10.1039/C4CP04895D

L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns et al., Porous carbon nanofiber???sulfur composite electrodes for lithium/sulfur cells, Energy & Environmental Science, vol.52, issue.12, pp.5053-5059, 2011.
DOI : 10.1016/j.electacta.2006.08.028

X. Cheng, J. Huang, Q. Zhang, H. Peng, M. Zhao et al., Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium???sulfur batteries, Nano Energy, vol.4, p.65, 2014.
DOI : 10.1016/j.nanoen.2013.12.013

L. Wang, Y. Zhao, M. L. Thomas, and H. R. Byon, In Situ Synthesis of Bipyramidal Sulfur with 3D Carbon Nanotube Framework for Lithium-Sulfur Batteries, Advanced Functional Materials, vol.23, issue.15, p.2248, 2014.
DOI : 10.1002/adfm.201200689

T. Lin, Y. Tang, Y. Wang, H. Bi, Z. Liu et al., Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene???sulfur composites for high-performance lithium-sulfur batteries, Energy & Environmental Science, vol.6, issue.4, p.1283, 2013.
DOI : 10.1038/nnano.2011.94

R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach, Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries, Advanced Materials, vol.153, issue.47, p.5641, 2011.
DOI : 10.1016/j.jpowsour.2005.05.037

J. Yan, X. Liu, X. Wang, and B. Li, Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes, J. Mater. Chem. A, vol.24, issue.18, p.10127, 2015.
DOI : 10.1002/adfm.201401501

G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries, Nano Letters, vol.11, issue.10, p.4462, 2011.
DOI : 10.1021/nl2027684

G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, and W. Li, Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries, Nano Letters, vol.13, issue.3, p.1265, 2013.
DOI : 10.1021/nl304795g

S. C. Jung and Y. Han, Monoclinic sulfur cathode utilizing carbon for high-performance lithium???sulfur batteries, Journal of Power Sources, vol.325, p.495, 2016.
DOI : 10.1016/j.jpowsour.2016.06.057

Y. Su, Y. Fu, and A. Manthiram, Self-weaving sulfur???carbon composite cathodes for high rate lithium???sulfur batteries, Physical Chemistry Chemical Physics, vol.109, issue.42, p.14495, 2012.
DOI : 10.1016/S0378-7753(02)00050-2

K. Jin, X. Zhou, L. Zhang, X. Xin, G. Wang et al., Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium???Sulfur Batteries, The Journal of Physical Chemistry C, vol.117, issue.41, p.21112, 2013.
DOI : 10.1021/jp406757w

H. S. Kang and Y. K. Sun, Freestanding Bilayer Carbon-Sulfur Cathode with Function of Entrapping Polysulfide for High Performance Li-S Batteries, Advanced Functional Materials, vol.24, issue.8, p.1225, 2016.
DOI : 10.1002/adfm.201302169

K. Mi, Y. Jiang, J. Feng, Y. Qian, and S. Xiong, Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Efficient Scaffolds for Lithium-Sulfur Batteries, Advanced Functional Materials, vol.9, issue.10, p.1571, 2016.
DOI : 10.1021/cg8005103

L. Q. Lu, L. J. Lu, and Y. Wang, Sulfur film-coated reduced graphene oxide composite for lithium???sulfur batteries, Journal of Materials Chemistry A, vol.46, issue.32, p.9173, 2013.
DOI : 10.1016/0021-9797(74)90021-6

C. Zhang, W. Lv, W. Zhang, X. Zheng, M. Wu et al., Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising Strategy for Pollutant Control and as an Electrode for Li-S Batteries, Advanced Energy Materials, vol.133, issue.7, p.1301565, 2014.
DOI : 10.1021/ja206955k

Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou et al., High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene, Nano Letters, vol.14, issue.8, p.4821, 2014.
DOI : 10.1021/nl5020475

M. Shaibani, A. Akbari, P. Sheath, C. D. Easton, P. C. Banerjee et al., Suppressed Polysulfide Crossover in Li???S Batteries through a High-Flux Graphene Oxide Membrane Supported on a Sulfur Cathode, ACS Nano, vol.10, issue.8, p.7768, 2016.
DOI : 10.1021/acsnano.6b03285

X. D. Huang, B. Sun, K. F. Li, S. Q. Chen, and G. X. Wang, Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium???sulfur batteries, Journal of Materials Chemistry A, vol.22, issue.43, p.13484, 2013.
DOI : 10.1039/c2jm30865g

S. Thieme, J. Bruckner, I. Bauer, M. Oschatz, L. Borchardt et al., High capacity micro-mesoporous carbon???sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure, Journal of Materials Chemistry A, vol.25, issue.32, p.9225, 2013.
DOI : 10.1149/1.3414001

J. Huang, H. Peng, X. Liu, J. Nie, X. Cheng et al., Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium???sulfur batteries, J. Mater. Chem. A, vol.46, issue.28, p.10869, 2014.
DOI : 10.1016/j.carbon.2008.04.017

L. Zeng, F. Pan, W. Li, Y. Jiang, X. Zhong et al., Free-standing porous carbon nanofibers???sulfur composite for flexible Li???S battery cathode, Nanoscale, vol.3, issue.16, p.9579, 2014.
DOI : 10.1002/aenm.201200396

J. Z. Wang, L. Lu, M. Choucair, J. A. Stride, X. Xu et al., Sulfur-graphene composite for rechargeable lithium batteries, Journal of Power Sources, vol.196, issue.16, p.7030, 2011.
DOI : 10.1016/j.jpowsour.2010.09.106

S. Evers and L. F. Nazar, Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content, Chem. Commun., vol.22, issue.9, p.1233, 2012.
DOI : 10.1002/adma.201002584

B. Wang, K. Li, D. Su, H. Ahn, and G. Wang, Superior Electrochemical Performance of Sulfur/Graphene Nanocomposite Material for High-Capacity Lithium-Sulfur Batteries, Chemistry - An Asian Journal, vol.47, issue.7, p.1637, 2012.
DOI : 10.1016/j.carbon.2009.03.053

H. Sun, G. Xu, Y. Xu, S. Sun, X. Zhang et al., A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries, Nano Research, vol.159, issue.10, p.726, 2012.
DOI : 10.1149/2.039204jes

L. Zhang, H. Huang, H. Yin, Y. Xia, J. Luo et al., Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium???sulfur batteries, J. Mater. Chem. A, vol.6, issue.32, p.16513, 2015.
DOI : 10.1039/c2ee23411d

B. Ding, C. Yuan, L. Shen, G. Xu, P. Nie et al., Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries, J. Mater. Chem. A, vol.45, issue.4, p.1096, 2013.
DOI : 10.1016/j.carbon.2007.02.034

T. Xu, J. Song, M. L. Gordin, H. Sohn, Z. Yu et al., Mesoporous Carbon???Carbon Nanotube???Sulfur Composite Microspheres for High-Areal-Capacity Lithium???Sulfur Battery Cathodes, ACS Applied Materials & Interfaces, vol.5, issue.21, p.11355, 2013.
DOI : 10.1021/am4035784

H. Peng, J. Liang, L. Zhu, J. Huang, X. Cheng et al., Catalytic Self-Limited Assembly at Hard Templates: A Mesoscale Approach to Graphene Nanoshells for Lithium???Sulfur Batteries, ACS Nano, vol.8, issue.11, p.11280, 2014.
DOI : 10.1021/nn503985s

S. Liu, K. Xie, Z. Chen, Y. Li, X. Hong et al., A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium???sulfur batteries, J. Mater. Chem. A, vol.4, issue.5, p.11395, 2015.
DOI : 10.1021/nn1006368

J. He, Y. Chen, P. Li, F. Fu, Z. Wang et al., Three-dimensional CNT/graphene???sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium???sulfur batteries, J. Mater. Chem. A, vol.49, issue.36, p.18605, 2015.
DOI : 10.1039/c3cc38009b

L. Sun, W. Kong, Y. Jiang, H. Wu, K. Jiang et al., Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries, J. Mater. Chem. A, vol.4, issue.10, p.5305, 2015.
DOI : 10.1038/ncomms2327

W. Weng, H. Lin, X. Chen, J. Ren, Z. Zhang et al., Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes, Journal of Materials Chemistry A, vol.7, issue.24, p.9306, 2014.
DOI : 10.1039/C3EE43350A

S. Chen, X. Huang, H. Liu, B. Sun, W. Yeoh et al., 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries, Advanced Energy Materials, vol.2, issue.8, p.1301761, 2014.
DOI : 10.1002/cctc.201000037

Y. Li, Z. Li, Q. Zhang, and P. K. Shen, Sulfur-infiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium???sulfur batteries, J. Mater. Chem. A, vol.11, issue.13, p.4528, 2014.
DOI : 10.1021/nl1030198

J. Feng, X. Qin, Z. Ma, J. Yang, W. Yang et al., A novel acetylene black/sulfur@graphene composite cathode with unique three-dimensional sandwich structure for lithium-sulfur batteries, Electrochimica Acta, vol.190, p.426, 2016.
DOI : 10.1016/j.electacta.2016.01.017

J. L. Wang, J. Yang, J. Y. Xie, and N. X. Xu, A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries, Advanced Materials, vol.143, issue.13-14, p.963, 2002.
DOI : 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P

J. Wang, J. Chen, K. Konstantinov, L. Zhao, S. H. Ng et al., Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries, Electrochimica Acta, vol.51, issue.22, p.4634, 2006.
DOI : 10.1016/j.electacta.2005.12.046

X. Liang, Y. Liu, Z. Wen, L. Huang, X. Wang et al., A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium???sulfur batteries, Journal of Power Sources, vol.196, issue.16, p.6951, 2011.
DOI : 10.1016/j.jpowsour.2010.11.132

G. Ma, Z. Wen, J. Jin, and Q. Wang, Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer, Journal of Power Sources, vol.273, p.511, 2015.
DOI : 10.1016/j.jpowsour.2014.09.141

N. Nakamura, T. Yokoshima, H. Nara, and T. Momma, Suppression of polysulfide dissolution by polypyrrole modification of sulfur-based cathodes in lithium secondary batteries, Journal of Power Sources, vol.274, p.1263, 2015.
DOI : 10.1016/j.jpowsour.2014.10.192

G. Ma, Z. Wen, J. Jin, Y. Lu, X. Wu et al., Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium???sulfur batteries, J. Mater. Chem. A, vol.5, issue.18, p.10350, 2014.
DOI : 10.1021/am4035784

X. Li, M. Rao, H. Lin, D. Chen, Y. Liu et al., Sulfur loaded in curved graphene and coated with conductive polyaniline: preparation and performance as a cathode for lithium???sulfur batteries, J. Mater. Chem. A, vol.158, issue.35, p.18098, 2015.
DOI : 10.1149/1.3515896

H. Gao, N. Lu, X. Liu, F. Wang, and . Wang, Facile preparation of an ultrathin sulfur-wrapped polyaniline nanofiber composite with a core???shell structure as a high performance cathode material for lithium???sulfur batteries, J. Mater. Chem. A, vol.52, issue.14, p.7215, 2015.
DOI : 10.1016/j.carbon.2012.09.055

X. Fang and H. Peng, A Revolution in Electrodes: Recent Progress in Rechargeable Lithium-Sulfur Batteries, Small, vol.253, issue.13, p.1488, 2015.
DOI : 10.1016/j.jpowsour.2013.12.031

C. Wang, W. Wan, J. Chen, H. Zhou, X. Zhang et al., Dual core???shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries, J. Mater. Chem. A, vol.159, issue.5, p.1716, 2013.
DOI : 10.1149/2.060204jes

J. L. Wang, J. Yang, J. Y. Xie, and N. X. Xu, A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries, Advanced Materials, vol.143, issue.13-14, p.963, 2002.
DOI : 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P

D. H. Wang, D. Xie, T. Yang, Y. Zhong, X. L. Wang et al., Conversion from Li2SO4 to Li2S@C on carbon paper matrix: A novel integrated cathode for lithium-sulfur batteries, Journal of Power Sources, vol.331, p.475, 2016.
DOI : 10.1016/j.jpowsour.2016.09.033

J. Ye, F. He, J. Nie, Y. Cao, H. Yang et al., Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium???sulfur batteries, J. Mater. Chem. A, vol.18, issue.14, p.7406, 2015.
DOI : 10.1007/s10008-013-2220-2

Q. Li, M. Liu, X. Qin, J. Wu, W. Han et al., Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium???sulfur batteries, J. Mater. Chem. A, vol.5, issue.33, p.12973, 2016.
DOI : 10.1021/am400958x

L. Huang, J. Cheng, X. Li, D. Yuan, W. Ni et al., Sulfur quantum dots wrapped by conductive polymer shell with internal void spaces for high-performance lithium???sulfur batteries, J. Mater. Chem. A, vol.117, issue.7, p.4049, 2015.
DOI : 10.1016/S0378-7753(03)00113-7

M. Chen, X. Wang, S. Cai, Z. Ma, P. Song et al., Enhancing the performance of lithium???sulfur batteries by anchoring polar polymers on the surface of sulfur host materials, J. Mater. Chem. A, vol.27, issue.41, p.16148, 2016.
DOI : 10.1002/adma.201405115

L. Ma, H. L. Zhuang, S. Wei, K. E. Hendrickson, M. S. Kim et al., Enhanced Li???S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode, ACS Nano, vol.10, issue.1, p.1050, 2016.
DOI : 10.1021/acsnano.5b06373

C. B. Bucur, J. Muldoon, and A. Lita, A layer-by-layer supramolecular structure for a sulfur cathode, Energy Environ. Sci., vol.24, issue.3, p.992, 2016.
DOI : 10.1002/adma.201201306

J. Song, H. Noh, J. Lee, I. Nah, W. Cho et al., In situ coating of Poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium???sulfur batteries, Journal of Power Sources, vol.332, p.72, 2016.
DOI : 10.1016/j.jpowsour.2016.09.092

S. E. Doris, A. L. Ward, P. D. Frischmann, L. Li, and B. A. Helms, Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium???sulfur battery membranes cast from polymers of intrinsic microporosity, J. Mater. Chem. A, vol.55, issue.43, p.16946, 2016.
DOI : 10.1016/j.carbon.2012.12.011

J. H. Kim, J. Choi, J. Seo, J. Kwon, and U. Paik, Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium???sulfur batteries, J. Mater. Chem. A, vol.6, issue.29, p.11203, 2016.
DOI : 10.1039/c3ee00072a

W. Zheng, X. G. Hu, and C. F. Zhang, Electrochemical Properties of Rechargeable Lithium Batteries with Sulfur-Containing Composite Cathode Materials, Electrochemical and Solid-State Letters, vol.140, issue.7, p.364, 2006.
DOI : 10.1016/S0378-7753(02)00050-2

Y. Zhang, X. Wu, H. Feng, L. Wang, A. Zhang et al., Effect of nanosized Mg0.8Cu0.2O on electrochemical properties of Li/S rechargeable batteries, International Journal of Hydrogen Energy, vol.34, issue.3, p.1556, 2009.
DOI : 10.1016/j.ijhydene.2008.12.006

B. Ding, L. Shen, G. Xu, P. Nie, and X. Zhang, Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium???sulfur battery, Electrochimica Acta, vol.107, p.78, 2013.
DOI : 10.1016/j.electacta.2013.06.009

Q. Li, Z. Zhang, K. Zhang, L. Xu, J. Fang et al., Synthesis and electrochemical performance of TiO2???sulfur composite cathode materials for lithium???sulfur batteries, Journal of Solid State Electrochemistry, vol.205, issue.11, p.2959, 2013.
DOI : 10.1016/j.jpowsour.2012.01.047

S. Rehman, S. Guo, and Y. Hou, @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery, Advanced Materials, vol.3, issue.16, p.3167, 2016.
DOI : 10.1039/C5TA00286A

Q. Pang, D. Kundu, M. Cuisinier, and L. F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries, Nature Communications, vol.5, p.4759, 2014.
DOI : 10.1149/2.026304jes

X. Wang, G. Li, J. Li, Y. Zhang, A. Wook et al., Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium???sulfur batteries, Energy Environ. Sci., vol.7, issue.8, p.2533, 2016.
DOI : 10.1021/acsnano.5b07347

N. Ding, Y. Lum, S. Chen, S. W. Chien, T. S. Hor et al., Sulfur???carbon yolk???shell particle based 3D interconnected nanostructures as cathodes for rechargeable lithium???sulfur batteries, J. Mater. Chem. A, vol.253, issue.5, p.1853, 2015.
DOI : 10.1016/j.jpowsour.2013.12.031

Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang et al., Sulphur???TiO2 yolk???shell nanoarchitecture with internal void space for long-cycle lithium???sulphur batteries, Nature Communications, vol.116, p.1331, 2013.
DOI : 10.1021/jp304380j

M. Yu, J. Ma, H. Song, A. Wang, F. Tian et al., on a nitrogen-doped graphene/sulfur electrode for high performance lithium???sulfur batteries, Energy Environ. Sci., vol.22, issue.4, p.1495, 2016.
DOI : 10.1039/c2jm16114a

L. Gao, M. Cao, Y. Q. Fu, Z. Zhong, Y. Shen et al., spheres assisted with graphene for a high performance lithium???sulfur battery, J. Mater. Chem. A, vol.9, issue.42, p.16454, 2016.
DOI : 10.1007/s12274-015-0976-7

K. Xie, K. Zhang, Y. Han, K. Yuan, Q. Song et al., A Novel TiO2-Wrapped Activated Carbon Fiber/Sulfur Hybrid Cathode for High Performance Lithium Sulfur Batteries, Electrochimica Acta, vol.210, p.415, 2016.
DOI : 10.1016/j.electacta.2016.05.172

C. Li, Z. Li, Q. Li, Z. Zhang, S. Dong et al., MOFs Derived Hierarchically Porous TiO 2 as Effective Chemical and Physical Immobilizer for Sulfur Species as Cathodes for High-Performance Lithium-Sulfur Batteries, Electrochimica Acta, vol.215, p.689, 2016.
DOI : 10.1016/j.electacta.2016.08.044

Z. Hao, L. Yuan, C. Chen, J. Xiang, Y. Li et al., TiN as a simple and efficient polysulfide immobilizer for lithium???sulfur batteries, J. Mater. Chem. A, vol.27, issue.45, p.17711, 2016.
DOI : 10.1002/adma.201405637

Q. Sun and Z. Fu, Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries, Electrochimica Acta, vol.54, issue.2, p.403, 2008.
DOI : 10.1016/j.electacta.2008.07.057

F. Gillot, J. Oro-sole, and M. R. Palacín, Nickel nitride as negative electrode material for lithium ion batteries, Journal of Materials Chemistry, vol.12, issue.27, p.9997, 2011.
DOI : 10.1016/j.elecom.2009.12.027

D. Choi and P. N. Kumta, Synthesis and Characterization of Nanostructured Niobium and Molybdenum Nitrides by a Two-Step Transition Metal Halide Approach, Journal of the American Ceramic Society, vol.153, issue.[12], p.2371, 2011.
DOI : 10.1149/1.2359692

X. Li, R. Tang, K. Hu, and L. Zhang, Hierarchical Porous Carbon Aerogels with VN Modification as Cathode Matrix for High Performance Lithium-Sulfur Batteries, Electrochimica Acta, vol.210, p.734, 2016.
DOI : 10.1016/j.electacta.2016.06.013

Z. Ma, Z. Li, K. Hu, D. Liu, J. Huo et al., The enhancement of polysulfide absorbsion in LiS batteries by hierarchically porous CoS2/carbon paper interlayer, Journal of Power Sources, vol.325, p.71, 2016.
DOI : 10.1016/j.jpowsour.2016.04.139

G. De-combarieu, M. Morcrette, F. Millange, N. Guillou, J. Cabana et al., Influence of the Benzoquinone Sorption on the Structure and Electrochemical Performance of the MIL-53(Fe) Hybrid Porous Material in a Lithium-Ion Battery, Chemistry of Materials, vol.21, issue.8, p.1602, 2009.
DOI : 10.1021/cm8032324

J. Zhou, R. Li, X. Fan, Y. Chen, R. Han et al., Rational design of a metal???organic framework host for sulfur storage in fast, long-cycle Li???S batteries, Energy & Environmental Science, vol.49, issue.8, p.2715, 2014.
DOI : 10.1039/c3cc41518j

Z. Zhao, S. Wang, R. Liang, Z. Li, Z. Shi et al., Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li???S batteries, J. Mater. Chem. A, vol.114, issue.33, p.13509, 2014.
DOI : 10.1021/jp102050s

J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu et al., Lewis Acid???Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries, Nano Letters, vol.14, issue.5, p.2345, 2014.
DOI : 10.1021/nl404721h

H. Tang, S. Yao, M. Jing, X. Wu, J. Hou et al., Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries, Electrochimica Acta, vol.176, p.442, 2015.
DOI : 10.1016/j.electacta.2015.06.157

Q. Pang, D. Kundu, M. Cuisinier, and L. F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries, Nature Communications, vol.5, p.4759, 2014.
DOI : 10.1149/2.026304jes

Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang et al., Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries, Nano Energy, vol.23, p.15, 2016.
DOI : 10.1016/j.nanoen.2016.02.049

X. Niu, X. Wang, D. Wang, Y. Li, Y. Zhang et al., Metal hydroxide ??? a new stabilizer for the construction of sulfur/carbon composites as high-performance cathode materials for lithium???sulfur batteries, J. Mater. Chem. A, vol.189, issue.33, p.17106, 2015.
DOI : 10.1016/j.jpowsour.2008.10.033

M. N. Obrovac and J. R. Dahn, Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites, Electrochemical and Solid-State Letters, vol.145, issue.4, p.70, 2002.
DOI : 10.1149/1.1452482

Y. Zhou, C. Wu, H. Zhang, X. Wu, and Z. Fu, Electrochemical reactivity of Co???Li2S nanocomposite for lithium-ion batteries, Electrochimica Acta, vol.52, issue.9, p.3130, 2007.
DOI : 10.1016/j.electacta.2006.09.054

A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, and M. Tatsumisago, All-solid-state Li/S batteries with highly conductive glass???ceramic electrolytes, Electrochemistry Communications, vol.5, issue.8, p.701, 2003.
DOI : 10.1016/S1388-2481(03)00167-X

A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, and M. Tatsumisago, All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material, Journal of Power Sources, vol.183, issue.1, p.422, 2008.
DOI : 10.1016/j.jpowsour.2008.05.031

X. He, J. Ren, L. Wang, W. Pu, C. Wan et al., Electrochemical characteristics of sulfur composite cathode for reversible lithium storage, Ionics, vol.146, issue.4, p.477, 2009.
DOI : 10.1002/1521-4095(20020704)14:13/14<963::AID-ADMA963>3.0.CO;2-S

A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, and M. Tatsumisago, All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material, Journal of Power Sources, vol.183, issue.1, p.422, 2008.
DOI : 10.1016/j.jpowsour.2008.05.031

A. Manthiram, Y. Fu, S. Chung, C. Zu, and Y. Su, Rechargeable Lithium???Sulfur Batteries, Chemical Reviews, vol.114, issue.23, p.11751, 2014.
DOI : 10.1021/cr500062v

J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang et al., Application of gelatin as a binder for the sulfur cathode in lithium???sulfur batteries, Electrochimica Acta, vol.53, issue.24, p.7084, 2008.
DOI : 10.1016/j.electacta.2008.05.022

L. Wang, Z. Yao, C. Monroe, J. Yang, and Y. Nuli, -Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries, Advanced Functional Materials, vol.20, issue.9, p.1194, 2013.
DOI : 10.1002/adma.200800627

URL : https://hal.archives-ouvertes.fr/hal-00354872

M. He, L. Yuan, W. Zhang, X. Hu, and Y. Huang, Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder, The Journal of Physical Chemistry C, vol.115, issue.31, p.15703, 2011.
DOI : 10.1021/jp2043416

J. Huang, Q. Zhang, S. Zhang, X. Liu, W. Zhu et al., Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode, Carbon, vol.58, p.99, 2013.
DOI : 10.1016/j.carbon.2013.02.037

P. G. Bruce and C. A. Vincent, Polymer electrolytes, Journal of the Chemical Society, Faraday Transactions, vol.89, issue.17, p.3187, 1993.
DOI : 10.1039/ft9938903187

T. Nakazawa, A. Ikoma, R. Kido, K. Ueno, K. Dokko et al., Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries, Journal of Power Sources, vol.307, p.746, 2016.
DOI : 10.1016/j.jpowsour.2016.01.045

M. Nagao, A. Hayashi, and M. Tatsumisago, Sulfur???carbon composite electrode for all-solid-state Li/S battery with Li2S???P2S5 solid electrolyte, Electrochimica Acta, vol.56, issue.17, p.6055, 2011.
DOI : 10.1016/j.electacta.2011.04.084

Z. Lin and C. Liang, Lithium???sulfur batteries: from liquid to solid cells, J. Mater. Chem. A, vol.157, issue.3, p.936, 2015.
DOI : 10.1149/1.3486083

S. Ujiie, A. Hayashi, and M. Tatsumisago, Structure, ionic conductivity and electrochemical stability of Li2S???P2S5???LiI glass and glass???ceramic electrolytes, Solid State Ionics, vol.211, p.42, 2012.
DOI : 10.1016/j.ssi.2012.01.017

A. Yamauchi, A. Sakuda, A. Hayashi, and M. Tatsumisago, Preparation and ionic conductivities of (100???????x)(0.75Li2S??0.25P2S5)??xLiBH4 glass electrolytes, Journal of Power Sources, vol.244, p.707, 2013.
DOI : 10.1016/j.jpowsour.2012.12.001

J. Hassoun and B. Scrosati, A High-Performance Polymer Tin Sulfur Lithium Ion Battery, Angewandte Chemie International Edition, vol.161, issue.13, p.2371, 2010.
DOI : 10.1016/j.jpowsour.2006.03.069

J. Shim, K. A. Striebel, and E. J. Cairns, The Lithium/Sulfur Rechargeable Cell, Journal of The Electrochemical Society, vol.126, issue.10, p.1321, 2002.
DOI : 10.1016/S0022-0728(97)00407-5

J. H. Shin and E. J. Cairns, Characterization of N-Methyl-N-Butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl Ether Mixtures as a Li Metal Cell Electrolyte, Journal of The Electrochemical Society, vol.163, issue.5, p.368, 2008.
DOI : 10.1021/cm049942j

C. Zhang, Y. Lin, and J. Liu, Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium???sulfur batteries, J. Mater. Chem. A, vol.2, issue.20, p.10760, 2015.
DOI : 10.1038/ncomms1435

X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, Journal of Power Sources, vol.196, issue.22, p.9839, 2011.
DOI : 10.1016/j.jpowsour.2011.08.027

S. S. Zhang, A new finding on the role of LiNO3 in lithium-sulfur battery, Journal of Power Sources, vol.322, p.99, 2016.
DOI : 10.1016/j.jpowsour.2016.05.009

J. Kim, H. S. Kim, J. Ahn, K. J. Lee, W. C. Yoo et al., Activation of micropore-confined sulfur within hierarchical porous carbon for lithium-sulfur batteries, Journal of Power Sources, vol.306, p.617, 2015.
DOI : 10.1016/j.jpowsour.2015.12.093

J. Gao, M. A. Lowe, Y. Kiya, and H. D. Abruña, Effects of Liquid Electrolytes on the Charge???Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies, The Journal of Physical Chemistry C, vol.115, issue.50, p.25132, 2011.
DOI : 10.1021/jp207714c

T. Yim, M. S. Park, J. S. Yu, K. J. Kim, K. Y. Im et al., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li???S batteries, Electrochimica Acta, vol.107, p.454, 2013.
DOI : 10.1016/j.electacta.2013.06.039

C. Barchasz, J. C. Leprêtre, S. Patoux, and F. Alloin, Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries, Electrochimica Acta, vol.89, p.737, 2013.
DOI : 10.1016/j.electacta.2012.11.001

C. Barchasz, J. C. Lepretre, S. Patoux, and F. Alloin, Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives, Journal of the Electrochemical Society, vol.160, issue.3, p.430, 2013.
DOI : 10.1149/2.022303jes

D. R. Changa, S. H. Leea, S. W. Kima, and H. T. Kimb, Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium???sulfur battery, Journal of Power Sources, vol.112, issue.2, p.452, 2002.
DOI : 10.1016/S0378-7753(02)00418-4

H. Lu, K. Zhang, Y. Yuan, F. Qin, Z. Zhang et al., Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether, Electrochimica Acta, vol.161, p.55, 2015.
DOI : 10.1016/j.electacta.2015.02.031

M. Liu, D. Zhou, Y. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium???sulfur batteries, Nano Energy, vol.22, p.278, 2016.
DOI : 10.1016/j.nanoen.2016.02.008

Y. G. Zhang, Y. Zhao, and Z. Bakenov, Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries, Journal of Solid State Electrochemistry, vol.225, issue.4, p.1111, 2014.
DOI : 10.1016/j.jpowsour.2012.09.098

W. Ahn, S. N. Lim, D. U. Lee, K. Kim, Z. Chen et al., Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries, J. Mater. Chem. A, vol.11, issue.11, p.9461, 2015.
DOI : 10.1038/nmat3191

L. X. Yuan, J. K. Feng, X. P. Ai, Y. L. Cao, S. L. Chen et al., Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Communications, vol.8, issue.4, p.610, 2006.
DOI : 10.1016/j.elecom.2006.02.007

Z. Lin, Z. Liu, W. Fu, N. J. Dudney, and C. Liang, Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries, Advanced Functional Materials, vol.182, issue.8, p.1064, 2013.
DOI : 10.1016/j.ssi.2010.10.001

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, p.4303, 2004.
DOI : 10.1021/cr030203g

J. T. Dudley, D. P. Wilkinson, G. Thomas, R. Levae, S. Woo et al., Conductivity of electrolytes for rechargeable lithium batteries, Journal of Power Sources, vol.35, issue.1, p.59, 1991.
DOI : 10.1016/0378-7753(91)80004-H

K. Xu and C. A. Angell, Sulfone-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.146, issue.44, p.920, 2002.
DOI : 10.1149/1.1483866

J. Scheers, P. Johansson, P. Szczecinalski, W. Wieczorek, M. Armand et al., Benzimidazole and imidazole lithium salts for battery electrolytes, Journal of Power Sources, vol.195, issue.18, p.6081, 2010.
DOI : 10.1016/j.jpowsour.2009.12.052

S. Kim, Y. Jung, and S. Park, Effect of imidazolium cation on cycle life characteristics of secondary lithium???sulfur cells using liquid electrolytes, Electrochimica Acta, vol.52, issue.5, p.2116, 2007.
DOI : 10.1016/j.electacta.2006.08.028

J. Gao, M. A. Lowe, Y. Kiya, and H. D. Abruna, Effects of Liquid Electrolytes on the Charge???Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies, The Journal of Physical Chemistry C, vol.115, issue.50, p.25132, 2011.
DOI : 10.1021/jp207714c

C. Barchasz, J. Lepretre, S. Patoux, and F. Alloin, Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives, Journal of the Electrochemical Society, vol.160, issue.3, p.430, 2013.
DOI : 10.1149/2.022303jes

X. Yu and A. Manthiram, A class of polysulfide catholytes for lithium???sulfur batteries: energy density, cyclability, and voltage enhancement, Phys. Chem. Chem. Phys., vol.14, issue.3, p.2127, 2015.
DOI : 10.1039/c2cp42796f

L. Suo, Y. Hu, H. Li, M. Armand, and L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nature Communications, vol.120, issue.201, p.1481
DOI : 10.1149/1.2403248

U. Stoeck, J. Balach, M. Klose, D. Wadewitz, E. Ahrens et al., Reconfiguration of lithium sulphur batteries: ???Enhancement of Li???S cell performance by employing a highly porous conductive separator coating???, Journal of Power Sources, vol.309, p.76, 2016.
DOI : 10.1016/j.jpowsour.2015.11.077

Z. Y. Zhang, Y. Q. Lai, Z. A. Zhang, and J. Li, Solid State Ion, p.278, 2015.

F. Zeng, Z. Jin, K. Yuan, S. Liu, X. Cheng et al., High performance lithium???sulfur batteries with a permselective sulfonated acetylene black modified separator, J. Mater. Chem. A, vol.5, issue.43, p.12319, 2016.
DOI : 10.1002/aenm.201500124

W. K. Shin, A. G. Kannan, and D. W. Kim, Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries, ACS Applied Materials & Interfaces, vol.7, issue.42, p.23700, 2015.
DOI : 10.1021/acsami.5b07730

S. Chung, P. Han, and A. Manthiram, A Polysulfide-Trapping Interface for Electrochemically Stable Sulfur Cathode Development, ACS Applied Materials & Interfaces, vol.8, issue.7, p.4709, 2016.
DOI : 10.1021/acsami.5b12012

S. H. Chung, P. Han, R. Singhal, V. Kalra, and A. Manthiram, Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide, Advanced Energy Materials, vol.70, issue.18, p.1500738, 2015.
DOI : 10.1016/j.electacta.2012.03.081

G. Zhou, S. Pei, L. Li, D. W. Wang, S. Wang et al., A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries, Advanced Materials, vol.23, issue.4, p.625, 2014.
DOI : 10.1002/adma.201103274

H. J. Peng, D. W. Wang, J. Q. Huang, X. B. Cheng, Z. Yuan et al., Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium-Sulfur Batteries, Advanced Science, vol.2, issue.1, p.1500268, 2016.
DOI : 10.1002/advs.201500068

J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert et al., Functional Mesoporous Carbon-Coated Separator for Long-Life, High-Energy Lithium-Sulfur Batteries, Advanced Functional Materials, vol.275, issue.33, p.5285, 2015.
DOI : 10.1016/j.jpowsour.2014.11.007

W. Lin, Y. F. Chen, P. J. Li, and F. Fu, Enhanced Performance of Lithium Sulfur Battery with a Reduced Graphene Oxide Coating Separator, Journal of the Electrochemical Society, vol.162, issue.8, p.1624, 2015.
DOI : 10.1149/2.0891508jes

M. S. Kim, L. Ma, S. Choudhury, S. S. Moganty, S. Wei et al., Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir???Blodgett process: application in lithium???sulfur batteries, J. Mater. Chem. A, vol.12, issue.11, p.14709, 2016.
DOI : 10.1002/smll.201502505

Z. J. Cai, Y. B. Liu, S. S. Liu, L. Li, and Y. M. Zhang, High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes, Energy Environ. Sci., vol.144, issue.98, p.5690, 2012.
DOI : 10.1149/1.1837571

X. Yu, J. Joseph, and A. Manthiram, Polymer lithium???sulfur batteries with a Nafion membrane and an advanced sulfur electrode, J. Mater. Chem. A, vol.15, issue.30, p.15683, 2015.
DOI : 10.1039/c2cp43394j

I. Bauer, S. Thieme, J. Bru?ckner, H. Althues, and S. , Reduced polysulfide shuttle in lithium???sulfur batteries using Nafion-based separators, Journal of Power Sources, vol.251, p.417, 2014.
DOI : 10.1016/j.jpowsour.2013.11.090

T. Z. Zhuang, J. Q. Huang, H. J. Peng, L. Y. He, X. B. Cheng et al., Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries, Small, vol.218, issue.3, p.381, 2016.
DOI : 10.1016/j.jpowsour.2012.06.100

Q. Z. Xiao, X. Z. Wang, W. Li, Z. H. Li, T. J. Zhang et al., Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery, Journal of Membrane Science, vol.334, issue.1-2, p.117, 2009.
DOI : 10.1016/j.memsci.2009.02.018

S. S. Zhang and D. T. Tran, A simple approach for superior performance of lithium/sulphur batteries modified with a gel polymer electrolyte, J. Mater. Chem. A, vol.211, issue.20, p.7383, 2014.
DOI : 10.1016/j.jpowsour.2012.04.006

W. Yang, W. Yang, J. Feng, Z. Ma, and G. Shao, High capacity and cycle stability Rechargeable Lithium???Sulfur batteries by sandwiched gel polymer electrolyte, Electrochimica Acta, vol.210, p.71, 2016.
DOI : 10.1016/j.electacta.2016.05.087

G. C. Wang, Y. Q. Lai, Z. A. Zhang, and J. Li, Enhanced rate capability and cycle stability of lithium???sulfur batteries with a bifunctional MCNT@PEG-modified separator, J. Mater. Chem. A, vol.26, issue.13, p.7139, 2015.
DOI : 10.1002/adma.201302877

G. C. Li, H. K. Jing, Z. Su, C. Lai, L. Chen et al., A hydrophilic separator for high performance lithium sulfur batteries, J. Mater. Chem. A, vol.7, issue.20, p.11014, 2015.
DOI : 10.1039/C4EE01377H

Z. A. Zhang, Z. Y. Zhang, J. Li, and Y. Q. Lai, Polydopamine-coated separator for high-performance lithium-sulfur batteries, Journal of Solid State Electrochemistry, vol.36, issue.6, p.1709, 2015.
DOI : 10.1016/j.elecom.2013.08.025

Y. Chen, N. Liu, H. Shao, W. Wang, M. Gao et al., Chitosan as a functional additive for high-performance lithium???sulfur batteries, J. Mater. Chem. A, vol.53, issue.29, p.15235, 2015.
DOI : 10.1016/j.electacta.2008.05.022

G. Ma, F. Huang, Z. Wen, Q. Wang, X. Hong et al., Enhanced performance of lithium sulfur batteries with conductive polymer modified separators, J. Mater. Chem. A, vol.160, issue.22, p.16968, 2016.
DOI : 10.1149/2.106311jes

Q. Xu, G. C. Hu, H. L. Bi, and H. F. Xiang, A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium-sulfur batteries, Ionics, vol.248, issue.44, p.981, 2015.
DOI : 10.1016/j.jpowsour.2013.09.132

U. Stoeck, J. Balach, M. Klose, D. Wadewitz, E. Ahrens et al., Reconfiguration of lithium sulphur batteries: ???Enhancement of Li???S cell performance by employing a highly porous conductive separator coating???, Journal of Power Sources, vol.309, p.76, 2016.
DOI : 10.1016/j.jpowsour.2015.11.077

J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert et al., Improved cycling stability of lithium???sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent, Journal of Power Sources, vol.303, p.317, 2016.
DOI : 10.1016/j.jpowsour.2015.11.018

C. H. Chang, S. H. Chung, and A. Manthiram, Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li???S batteries with pure sulfur cathodes, J. Mater. Chem. A, vol.52, issue.37, p.18829, 2015.
DOI : 10.1016/j.electacta.2006.01.086

H. Shao, B. Huang, N. Liu, W. Wang, H. Zhang et al., ???carbon framework derived from crab shells for lithium???sulfur batteries, J. Mater. Chem. A, vol.2, issue.42, p.16627, 2016.
DOI : 10.1039/C4TA03877K

J. D. Zhu, C. Chen, Y. Lu, J. Zang, M. J. Jiang et al., Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium???sulfur batteries, Carbon, vol.101, p.272, 2016.
DOI : 10.1016/j.carbon.2016.02.007

J. D. Zhu, E. Yildirim, K. Aly, J. L. Shen, C. Chen et al., Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium???sulfur batteries: an experimental and molecular modeling study, J. Mater. Chem. A, vol.36, issue.35, p.13572, 2016.
DOI : 10.1063/1.2915587

M. Agostini, A lithium-ion sulfur battery using a polymer, polysulfide-added membrane, Scientific Reports, vol.202, issue.1, p.7591, 2015.
DOI : 10.1016/j.jpowsour.2011.11.060

C. Y. Fan, H. Y. Yuan, H. H. Li, H. F. Wang, W. L. Li et al., The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li???S Batteries, ACS Applied Materials & Interfaces, vol.8, issue.25, p.16108, 2016.
DOI : 10.1021/acsami.6b04578

J. Yang, F. Chen, C. Li, T. Bai, B. Long et al., A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium???sulfur batteries, J. Mater. Chem. A, vol.129, issue.37, p.14324, 2016.
DOI : 10.1016/j.electacta.2014.02.077

M. Zhao, X. Liu, Q. Zhang, G. Tian, J. Huang et al., Graphene/Single-Walled Carbon Nanotube Hybrids: One-Step Catalytic Growth and Applications for High-Rate Li???S Batteries, ACS Nano, vol.6, issue.12, p.10759, 2012.
DOI : 10.1021/nn304037d

X. Chen, Z. Xiao, X. Ning, Z. Liu, Z. Yang et al., Sulfur-Impregnated, Sandwich-Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for High-Performance Lithium-Sulfur Batteries, Advanced Energy Materials, vol.243, issue.13, p.1301988, 2014.
DOI : 10.1016/j.jpowsour.2013.04.076

Y. S. Su and A. Manthiram, Lithium???sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nature Communications, vol.99, p.1166, 2012.
DOI : 10.1063/1.465600

J. Wang, Y. Yang, and F. Kang, Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries, Electrochimica Acta, vol.168, p.271, 2015.
DOI : 10.1016/j.electacta.2015.04.055

H. M. Kim, J. Hwang, A. Manthiram, and Y. Sun, High-Performance Lithium???Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode???Electrolyte Interface, ACS Applied Materials & Interfaces, vol.8, issue.1, p.983, 2016.
DOI : 10.1021/acsami.5b10812

X. Wang, Z. Wang, and L. Chen, Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium???sulfur battery, Journal of Power Sources, vol.242, p.65, 2013.
DOI : 10.1016/j.jpowsour.2013.05.063

L. Wang, Z. Yang, H. Nie, C. Gu, W. Hua et al., A lightweight multifunctional interlayer of sulfur???nitrogen dual-doped graphene for ultrafast, long-life lithium???sulfur batteries, J. Mater. Chem. A, vol.15, issue.40, p.15343, 2016.
DOI : 10.1021/acs.nanolett.5b02432

S. S. Zhang, D. Tran, and Z. C. Zhang, Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery, J. Mater. Chem. A, vol.191, issue.43, p.18288, 2014.
DOI : 10.1016/j.jpowsour.2009.02.007

S. S. Zhang, D. T. Tran, and Z. C. Zhang, Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery, J. Mater. Chem. A, vol.191, issue.43, p.18288, 2014.
DOI : 10.1016/j.jpowsour.2009.02.007

C. Zu, Y. Su, Y. Fu, and A. Manthiram, Improved lithium???sulfur cells with a treated carbon paper interlayer, Physical Chemistry Chemical Physics, vol.48, issue.7, p.2291, 2013.
DOI : 10.1039/c2cc33945e

S. Chung and A. Manthiram, A Natural Carbonized Leaf as Polysulfide Diffusion Inhibitor for High-Performance Lithium-Sulfur Battery Cells, ChemSusChem, vol.135, issue.6, p.1655, 2014.
DOI : 10.1149/1.2095868

C. L. Lee and I. D. Kim, A hierarchical carbon nanotube-loaded glass-filter composite paper interlayer with outstanding electrolyte uptake properties for high-performance lithium???sulphur batteries, Nanoscale, vol.267, issue.23, p.10362, 2015.
DOI : 10.1016/j.jpowsour.2014.05.057

G. Ma, Z. Wen, Q. Wang, C. Shen, P. Peng et al., Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer, Journal of Power Sources, vol.273, p.511, 2015.
DOI : 10.1016/j.jpowsour.2014.09.141

J. Huang, B. Zhang, Z. Xu, S. Abouali, M. A. Garakani et al., Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium???sulfur batteries, Journal of Power Sources, vol.285, p.43, 2015.
DOI : 10.1016/j.jpowsour.2015.02.140

Y. Yang, W. Sun, J. Zhang, X. Yue, Z. Wang et al., High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer, Electrochimica Acta, vol.209, p.691, 2016.
DOI : 10.1016/j.electacta.2016.05.092

H. Jing, L. Kong, S. Liu, G. Li, and X. Gao, layer for lithium???sulfur battery, J. Mater. Chem. A, vol.284, issue.121, p.12213, 2015.
DOI : 10.1016/j.jpowsour.2015.03.004

S. S. Zhang and J. A. Read, A new direction for the performance improvement of rechargeable lithium/sulfur batteries, Journal of Power Sources, vol.200, p.77, 2012.
DOI : 10.1016/j.jpowsour.2011.10.076

C. Zu, Y. Fu, and A. Manthiram, Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes, Journal of Materials Chemistry A, vol.21, issue.35, p.10362, 2013.
DOI : 10.1039/c1jm12979a

Y. Fu, Y. S. Su, and A. Manthiram, Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes, Angewandte Chemie International Edition, vol.51, issue.121, p.6930, 2013.
DOI : 10.1002/anie.201201429

M. Nagao, A. Hayashi, M. Tatsumisago, T. Ichinose, T. Ozaki et al., Li 2 S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium???sulfur batteries, Journal of Power Sources, vol.274, p.471, 2015.
DOI : 10.1016/j.jpowsour.2014.10.043

T. N. Doan, M. Ghaznavi, Y. Zhao, Y. Zhang, A. Konarov et al., Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode, Journal of Power Sources, vol.241, p.61, 2013.
DOI : 10.1016/j.jpowsour.2013.04.113

M. Agostini, Y. Aihara, T. Yamada, B. Scrosati, and J. Hassoun, A lithium???sulfur battery using a solid, glass-type P2S5???Li2S electrolyte, Solid State Ionics, vol.244, p.48, 2013.
DOI : 10.1016/j.ssi.2013.04.024

A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, and M. Tatsumisago, All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material, Journal of Power Sources, vol.183, issue.1, p.422, 2008.
DOI : 10.1016/j.jpowsour.2008.05.031

A. G. Simmonds, J. J. Griebel, J. Park, K. R. Kim, W. J. Chung et al., Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li???S Batteries, ACS Macro Letters, vol.3, issue.3, pp.229-232, 2014.
DOI : 10.1021/mz400649w

J. He, Y. Chen, W. Lv, K. Wen, P. Li et al., Highly-flexible 3D Li 2 S/graphene cathode for high-performance lithium sulfur batteries, Journal of Power Sources, vol.327, p.474, 2016.
DOI : 10.1016/j.jpowsour.2016.07.088

M. Agostini, J. Hassoun, J. Liu, M. Jeong, H. Nara et al., A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode, ACS Applied Materials & Interfaces, vol.6, issue.14, p.10924, 2014.
DOI : 10.1021/am4057166

J. Hassoun and B. Scrosati, A High-Performance Polymer Tin Sulfur Lithium Ion Battery, Angewandte Chemie International Edition, vol.161, issue.13, p.2371, 2010.
DOI : 10.1016/j.jpowsour.2006.03.069

H. Jung, C. M. Park, and H. J. Sohn, Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries, Electrochimica Acta, vol.56, issue.5, p.2135, 2011.
DOI : 10.1016/j.electacta.2010.11.045

Y. Zhao, D. Gao, J. Ni, L. Gao, J. Yang et al., One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability, Nano Research, vol.221, issue.5, p.765, 2014.
DOI : 10.1016/j.jpowsour.2012.07.107

I. Gomez, D. Mecerreyes, J. A. Blazquez, O. Leonet, H. Ben-youcef et al., Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries, Journal of Power Sources, vol.329, p.72, 2016.
DOI : 10.1016/j.jpowsour.2016.08.046

Z. Liu, X. Zheng, S. Luo, S. Xu, and N. Yuan, as the host material for the S cathode, J. Mater. Chem. A, vol.14, issue.35, p.13395, 2016.
DOI : 10.1021/nl502331f