J. A. Allen, 1877) The influence of physical conditions in the genesis of species, Radical 447 Review, vol.1, pp.108-140

K. G. Ashton, Patterns of within-species body size variation of birds : strong evidence 449 for Bergmann's rule, Global Ecology and Biogeography, vol.11, pp.505-523, 2002.

J. S. Bale, G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer et al., , p.451

J. Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. Good et al., , p.452

S. Jones, T. H. Lindroth, R. L. Press, M. C. Symrnioudis, I. Watt et al., , p.453

J. B. , Herbivory in global climate change research: Direct effects of rising 454 temperature on insect herbivores, Global Change Biology, vol.8, pp.1-16, 2002.

J. H. Van-balen, Population Fluctuations of the Great Tit and Feeding Conditions in 456 Winter, Ardea, vol.68, pp.143-164, 1980.

C. Bergmann, Uber die Verhaltnisse der Warmeokonomie der Thiere zu ihrer Grosse, p.458, 1847.

. Göttinger and . Göttingen,

M. Björklund, A. Borras, J. Cabrera, and J. C. Senar, Increase in body size is correlated 460 to warmer winters in a passerine bird as inferred from time series data, Ecology, p.461, 2014.

C. Both and L. Te-marvelde, Climate change and timing of avian breeding and 463 migration throughout Europe, Climate Research, vol.35, pp.93-105, 2007.

M. D. Collins, G. E. Relyea, E. C. Blustein, and S. M. Badami, Heterogeneous changes in 465 avian body size across and within species, Journal of Ornithology, vol.158, pp.39-52, 2017.

S. J. Cunningham, R. O. Martin, C. L. Hojem, and P. A. Hockey, Temperatures in 467 Excess of Critical Thresholds Threaten Nestling Growth and Survival in A Rapidly, p.468, 2013.

, Warming Arid Savanna: A Study of Common Fiscals, PLoS ONE, vol.8, pp.469-2929

B. Leroy, C. Bellard, N. Dubos, A. Colliot, M. Vasseur et al., , p.546

A. Canard and F. Ysnel, Forecasted climate and land use changes, and protected 547 areas: the contrasting case of spiders, Diversity and Distributions, vol.20, pp.686-697, 2014.

J. Lindström, Early development and fitness in birds and mammals, Trends in Ecology 549 and Evolution, vol.14, pp.343-348, 1999.

A. E. Mckechnie and B. O. Wolf, Climate change increases the likelihood of 551 catastrophic avian mortality events during extreme heat waves, Biology letters, vol.6, pp.253-552, 2010.

S. Meiri, D. Guy, T. Dayan, and D. Simberloff, Global change and carnivore body size: 554 data are stasis, Global Ecology and Biogeography, vol.18, pp.240-247, 2009.

J. A. Mertens, Thermal conditions for successful breeding in Great Tits, p.556, 1977.

L. , Relation of growth and development of temperature regulation in nestling great 557 tits, Oecologia, vol.28, pp.1-29

A. P. Møller and M. D. Jennions, How much variance can be explained by ecologists and 559 evolutionary biologists?, Oecologia, vol.132, pp.492-500, 2002.

C. Parmesan and G. Yohe, A globally coherent fingerprint of climate change impacts 561 across natural systems, Nature, vol.421, pp.37-42, 2003.

M. C. Peel, B. L. Finlayson, and T. A. Mcmahon, Updated world map of the Köppen-563, 2007.

, Geiger climate classification, Hydrology and Earth System Sciences Discussions, 4, pp.439-564

J. H. Pérez, J. S. Krause, H. E. Chmura, S. Bowman, M. Mcguigan et al., , p.566

S. L. Hunt, K. E. Gough, L. Boelman, N. T. Wingfield, and J. C. , Nestling growth 567 rates in relation to food abundance and weather in the Arctic, The Auk, vol.133, pp.261-272, 2016.

M. Van-de-pol and A. Cockburn, Identifying the critical climatic time window that 569 25 affects trait expression, The American naturalist, vol.177, pp.698-707, 2011.

. R-core-team, R: A language and environment for statistical computing. R Foundation 571 for Statistical Computing, 2016.

S. Rodríguez and E. Barba, Nestling growth is impaired by heat stress: An experimental 573 study in a mediterranean great tit population, Zoological Studies, p.55, 2016.

V. Ronget, J. M. Gaillard, T. Coulson, M. Garratt, F. Gueyffier et al., 575 (2017) Causes and consequences of variation in offspring body mass: Meta-analyses in 576 birds and mammals, Biological Reviews, vol.93, pp.1-27

V. Salewski, W. M. Hochachka, and W. Fiedler, Global warming and Bergmann's rule: 578 do central European passerines adjust their body size to rising temperatures?, Oecologia, vol.579, pp.247-60, 2010.

W. A. Searcy, S. Peters, and S. Nowicki, Effects of early nutrition on growth rate and 581 adult size in song sparrows Melospiza melodia, Journal of Avian Biology, vol.35, pp.269-279, 2004.

J. B. Socolar, P. N. Epanchin, S. R. Beissinger, and M. W. Tingley, Phenological shifts 583 conserve thermal niches in North American birds and reshape expectations for climate-584 driven range shifts, Proceedings of the National Academy of Sciences, vol.114, 2017.

D. J. Spiegelhalter, N. G. Best, and B. P. Carlin, Bayesian measures of model complexity 586 and fit, J. R. Statist. Soc. B, vol.64, pp.583-639, 2002.

L. Svensson, Identification guide to European passerines, 1992.

C. Teplitsky and V. Millien, Climate warming and Bergmann's rule through time: is 589 there any evidence? Evolutionary applications, vol.7, pp.156-68, 2014.

J. J. Tewksbury, R. B. Huey, and C. A. Deutsch, Putting the Heat on Tropical Animals 591, 2008.

, The Scale of Prediction, Science, vol.320, pp.1296-1297

Y. Yom-tov and E. Geffen, Recent spatial and temporal changes in body size of 593 terrestrial vertebrates: probable causes and pitfalls, Biological Reviews, vol.86, pp.531-572, 2011.

, DATA ACCESSIBILITY: The dataset used in this analysis is available as an R object in 596 supporting information