J. G. De-gaudenzi, G. Noé, V. A. Campo, A. C. Frasch, and A. Cassola, Gene expression regulation in trypanosomatids. Essays. Biochem, vol.51, pp.31-46, 2011.

W. H. 2010, First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases.; Switzerland, 2010.

N. Yoshida and M. Cortez, Trypanosoma cruzi: parasite and host cell signaling during the invasion process, Subcell. Biochem, vol.47, pp.82-91, 2008.

D. E. Teixeira, M. Benchimol, P. H. Crepaldi, and W. De-souza, Interactive Multimedia to Teach the Life Cycle of Trypanosoma cruzi, the Causative Agent of Chagas Disease, PLoS Negl. Trop. Dis, vol.6, issue.8, p.1749, 2012.

A. Prata, Clinical and epidemiological aspects of Chagas disease, Lancet Infect. Dis, vol.1, issue.2, pp.92-100, 2001.

G. F. Cota, M. R. De-sousa, and A. Rabello, Predictors of visceral leishmaniasis relapse in HIV-infected patients: a systematic review, PLoS Negl. Trop. Dis, vol.5, issue.6, p.1153, 2011.

N. D. Rawlings, A. J. Barrett, and A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res, vol.40, pp.343-350, 2012.

M. Shinoda, K. Okamiya, and K. Toide, Effect of a novel prolyl endopeptidase inhibitor, JTP-4819, on thyrotropin-releasing hormone-like immunoreactivity in the cerebral cortex and hippocampus of aged rats, Jpn. J. Pharmacol, vol.69, issue.3, pp.273-276, 1995.

W. R. Welches, K. B. Brosnihan, and C. M. Ferrario, A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11, Life Sci, issue.18, pp.1461-1480, 1993.

D. J. Drucker, Therapeutic potential of dipeptidyl peptidase IV inhibitors for the treatment of type 2 diabetes, Expert Opin. Investig. Drugs, vol.12, issue.1, pp.87-100, 2003.

S. Ristic, S. Byiers, J. Foley, and D. Holmes, Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: vildagliptin (LAF237) dose response, Diabetes Obes. Metab, vol.7, issue.6, pp.692-698, 2005.

P. Aschner, M. S. Kipnes, J. K. Lunceford, M. Sanchez, C. Mickel et al., Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes, Diabetes Care, vol.29, issue.12, pp.2632-2637, 2006.

L. Shan, Ø. Molberg, I. Parrot, F. Hausch, F. Filiz et al., Structural basis for gluten intolerance in celiac sprue, Science, vol.297, issue.5590, pp.2275-2279, 2002.

J. Ehren, S. Govindarajan, B. Morón, J. Minshull, and C. Khosla, Protein engineering of improved prolyl endopeptidases for celiac sprue therapy, Protein Eng. Des. Sel, vol.21, issue.12, pp.699-707, 2008.

F. N. Motta, I. M. Bastos, E. Faudry, C. Ebel, M. M. Lima et al., The Trypanosoma cruzi virulence factor oligopeptidase B (OPBTc) assembles into an active and stable dimer, PLoS One, vol.7, issue.1, p.30431, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02319002

K. Mcluskey, N. G. Paterson, N. D. Bland, N. W. Isaacs, and J. C. Mottram, Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor, J. Biol. Chem, issue.50, pp.39249-39259, 2010.

V. Fülöp, Z. Böcskei, and L. Polgár, Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis, Cell, vol.94, issue.2, pp.161-170, 1998.

V. Fülöp, Z. Szeltner, and L. Polgár, Catalysis of serine oligopeptidases is controlled by a gating filter mechanism, EMBO Rep, vol.1, issue.3, pp.277-281, 2000.

M. Fuxreiter, C. Magyar, T. Juhász, Z. Szeltner, L. Polgár et al., Flexibility of prolyl oligopeptidase: molecular dynamics and molecular framework analysis of the potential substrate pathways, Proteins, vol.60, issue.3, pp.504-512, 2005.

Z. Szeltner, D. Rea, T. Juhász, V. Renner, V. Fülöp et al., Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding, J. Mol. Biol, vol.340, issue.3, pp.627-637, 2004.

L. Shan, I. I. Mathews, and C. Khosla, Structural and mechanistic analysis of two prolyl endopeptidases: role of interdomain dynamics in catalysis and specificity, Proc. Natl. Acad. Sci. U S A, vol.102, issue.10, pp.3599-3604, 2005.

M. Li, C. Chen, D. R. Davies, and T. K. Chiu, Induced-fit mechanism for prolyl endopeptidase, J. Biol. Chem, issue.28, pp.21487-21495, 2010.

K. Kaszuba, T. Róg, R. Danne, P. Canning, V. Fülöp et al., Molecular dynamics, crystallography and mutagenesis studies on the substrate gating mechanism of prolyl oligopeptidase, Biochimie, vol.94, issue.6, pp.1398-1411, 2012.

S. Kaushik and R. Sowdhamini, Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding, PLoS One, vol.6, issue.11, p.26251, 2011.

C. D. Haffner, C. J. Diaz, A. B. Miller, R. A. Reid, K. P. Madauss et al., Pyrrolidinyl pyridone and pyrazinone analogues as potent inhibitors of prolyl oligopeptidase (POP), Bioorg. Med. Chem. Lett, vol.18, issue.15, pp.4360-4363, 2008.

M. Holmquist, Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms, Curr. Protein Pept. Sci, vol.1, issue.2, pp.209-235, 2000.

I. M. Bastos, P. Grellier, N. F. Martins, G. Cadavid-restrepo, M. R. De-souza-ault et al., Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells, Biochem. J, pp.29-38, 2005.

C. K. Chen, N. L. Chan, and A. H. Wang, The many blades of thepropeller proteins: conserved but versatile, Trends Biochem. Sci, issue.10, pp.553-561, 2011.

L. H. Arnold, L. E. Butt, S. H. Prior, C. M. Read, G. B. Fields et al., The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite, J. Biol. Chem, issue.52, pp.45073-45082, 2011.

W. L. Huang, Y. R. Wang, T. P. Ko, C. Y. Chia, K. F. Huang et al., Crystal structure and functional analysis of the glutaminyl cyclase from Xanthomonas campestris, J. Mol. Biol, issue.3, pp.374-388, 2010.

E. E. Chufán, M. De, B. A. Eipper, R. E. Mains, and L. M. Amzel, Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme, Structure, vol.17, issue.7, pp.965-973, 2009.

I. Bosanac, H. R. Maun, S. J. Scales, X. Wen, A. Lingel et al., The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling, Nat. Struct. Mol. Biol, issue.7, pp.691-697, 2009.

C. N. Chen, K. H. Chin, A. H. Wang, and S. H. Chou, The first crystal structure of gluconolactonase important in the glucose secondary metabolic pathways, J. Mol. Biol, vol.384, issue.3, pp.604-614, 2008.

H. G. Beisel, S. Kawabata, S. Iwanaga, R. Huber, and W. Bode, Tachylectin-2: crystal structure of a specific GlcNAc/GalNAcbinding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus, EMBO J, vol.18, issue.9, pp.2313-2322, 1999.

S. C. Baker, N. F. Saunders, A. C. Willis, S. J. Ferguson, J. Hajdu et al., Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to betapropeller folds, J. Mol. Biol, vol.269, issue.3, pp.440-455, 1997.

L. Polgár, Prolyl endopeptidase catalysis. A physical rather than a chemical step is rate-limiting, Biochem. J, pp.647-648, 1992.

J. M. Santana, P. Grellier, J. Schrével, and A. R. Teixeira, A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV, Biochem. J, pp.129-137, 1997.

I. M. Bastos, F. N. Motta, S. Charneau, J. M. Santana, L. Dubost et al., Prolyl oligopeptidase of Trypanosoma brucei hydrolyzes native collagen, peptide hormones and is active in the plasma of infected mice, Microbes Infect, issue.6, pp.457-466, 2010.
URL : https://hal.archives-ouvertes.fr/mnhn-02047420

J. Gass and C. Khosla, Prolyl endopeptidases. Cell. Mol. Life Sci, vol.64, issue.3, pp.345-355, 2007.

J. P. Hemerly, V. Oliveira, E. Del-nery, R. E. Morty, N. W. Andrews et al., Subsite specificity (S3, S2, S1', S2' and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity, Bio-Chem J, vol.373, pp.933-939, 2003.

T. Juhász, Z. Szeltner, V. Renner, and L. Polgár, Role of the oxyanion binding site and subsites S1 and S2 in the catalysis of oligopeptidase B, a novel target for antimicrobial chemotherapy, Biochemistry, issue.12, pp.4096-4106, 2002.

T. Gérczei, G. M. Keserü, and G. Náray-szabó, Construction of a 3D model of oligopeptidase B, a potential processing enzyme in prokaryotes, J. Mol. Graph. Model, vol.18, issue.1, pp.57-75, 2000.

T. H. Coetzer, J. P. Goldring, and L. E. Huson, Oligopeptidase B: a processing peptidase involved in pathogenesis, Biochimie, vol.90, issue.2, pp.336-344, 2008.

R. E. Morty, V. Fülöp, and N. W. Andrews, Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium, J. Bacteriol, issue.12, pp.3329-3337, 2002.

M. Ismail, N. I. Yuasa, T. Yuasa, K. Nambu, Y. Nisimoto et al., A critical role for highly conserved Glu(610) residue of oligopeptidase B from Trypanosoma brucei in thermal stability, J. Biochem, issue.2, pp.201-211, 2010.

J. M. Santana, P. Grellier, M. H. Rodier, J. Schrevel, and A. Teixeira, Purification and characterization of a new 120 kDa alkaline proteinase of Trypanosoma cruzi, Biochem. Biophys. Res. Commun, vol.187, issue.3, pp.1466-1473, 1992.

B. A. Burleigh, E. V. Caler, P. Webster, and N. W. Andrews, A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells, J. Cell. Biol, vol.136, issue.3, pp.609-620, 1997.

R. E. Morty, A. Y. Shih, V. Fülöp, and N. W. Andrews, Identification of the reactive cysteine residues in oligopeptidase B from Trypanosoma brucei, FEBS Lett, issue.10, pp.2191-2196, 2005.

J. Lebowitz, M. S. Lewis, and P. Schuck, Modern analytical ultracentrifugation in protein science: a tutorial review, Protein Sci, vol.11, issue.9, pp.2067-2079, 2002.

B. A. Burleigh and A. M. Woolsey, Cell signalling and Trypanosoma cruzi invasion, Cell Microbiol, vol.4, issue.11, pp.701-711, 2002.

J. R. Coura and J. Borges-pereira, Chagas disease: 100 years after its discovery. A systemic review, Acta Trop, pp.5-13, 2010.

N. Yoshida, Molecular basis of mammalian cell invasion by Trypanosoma cruzi, An. Acad. Bras. Cienc, vol.78, issue.1, pp.87-111, 2006.

E. Lemichez, M. Lecuit, X. Nassif, and S. Bourdoulous, Breaking the wall: targeting of the endothelium by pathogenic bacteria, Nat. Rev. Microbiol, vol.8, issue.2, pp.93-104, 2010.

P. Grellier, S. Vendeville, R. Joyeau, I. M. Bastos, H. Drobecq et al., Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes, J. Biol. Chem, issue.50, pp.47078-47086, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00086392

L. Diacovich and J. P. Gorvel, Bacterial manipulation of innate immunity to promote infection, Nat Rev Microbiol, vol.8, issue.2, pp.117-128, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00553069

W. C. Parks, Matrix metalloproteinases in repair, Wound Repair Regen, vol.7, issue.6, pp.423-432, 1999.

K. M. Peterson, X. Guo, A. G. Elkahloun, D. Mondal, P. K. Bardhan et al., The expression of REG 1A and REG 1B is increased during acute amebic colitis, Parasitol. Int, vol.60, issue.3, pp.296-300, 2011.

R. Thibeaux, A. Dufour, P. Roux, M. Bernier, A. C. Baglin et al., Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon, Cell. Microbiol, vol.14, issue.5, pp.609-621, 2012.

R. R. Pfister, J. L. Haddox, and C. I. Sommers, Injection of chemoattractants into normal cornea: a model of inflammation after alkali injury, Invest. Ophthalmol. Vis. Sci, vol.39, issue.9, pp.1744-1750, 1998.

N. M. Weathington, A. H. Van-houwelingen, B. D. Noerager, P. L. Jackson, A. D. Kraneveld et al., A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation, Nat. Med, vol.12, issue.3, pp.317-323, 2006.

I. Clark-lewis, B. Dewald, M. Loetscher, B. Moser, and M. Baggiolini, Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids, J. Biol. Chem, issue.23, pp.16075-16081, 1994.

A. Gaggar, P. L. Jackson, B. D. Noerager, P. J. O'reilly, D. B. Mcquaid et al., A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation, J. Immunol, issue.8, pp.5662-5669, 2008.

F. R. Gutierrez, M. M. Lalu, F. S. Mariano, C. M. Milanezi, J. Cena et al., Increased activities of cardiac matrix metalloproteinases matrix metalloproteinase (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental Trypanosoma cruzi infection, J. Infect. Dis, vol.197, issue.10, pp.1468-1476, 2008.

S. Vendeville, L. Bourel, E. Davioud-charvet, P. Grellier, B. Deprez et al., Automated parallel synthesis of a tetrahydroisoquinolin-based library: potential prolyl endopeptidase inhibitors, Bioorg. Med. Chem. Lett, vol.9, issue.3, pp.437-442, 1999.

S. Vendeville, E. Buisine, X. Williard, J. Schrevel, P. Grellier et al., Identification of inhibitors of an 80 kDa protease from Trypanosoma cruzi through the screening of a combinatorial peptide library, Chem. Pharm. Bull. (Tokyo), vol.47, issue.2, pp.194-198, 1999.

R. Joyeau, C. Maoulida, C. Guillet, F. Frappier, A. R. Teixeira et al., Synthesis and activity of pyrrolidinyl-and thiazolidinyl-dipeptide derivatives as inhibitors of the Tc80 prolyl oligopeptidase from Trypanosoma cruzi, Eur. J. Med. Chem, vol.35, issue.2, pp.257-266, 2000.

S. Vendeville, F. Goossens, M. A. Debreu-fontaine, V. Landry, E. Davioud-charvet et al., Comparison of the inhibition of human and Trypanosoma cruzi prolyl endopeptidases, Bioorg. Med. Chem, issue.6, pp.1719-1729, 2002.

G. Bal, P. Van-der-veken, D. Antonov, A. M. Lambeir, P. Grellier et al., Prolylisoxazoles: potent inhibitors of prolyloligopeptidase with antitrypanosomal activity, Bioorg. Med. Chem. Lett, vol.13, issue.17, pp.2875-2878, 2003.
URL : https://hal.archives-ouvertes.fr/mnhn-02867484

E. Ortega-barria and M. E. Pereira, A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells, Cell, vol.67, issue.2, pp.411-421, 1991.

I. Tardieux, P. Webster, J. Ravesloot, W. Boron, J. A. Lunn et al., Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells, Cell, issue.7, pp.1117-1130, 1992.

E. V. Caler, S. Vaena-de-avalos, P. A. Haynes, N. W. Andrews, and B. A. Burleigh, Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi, EMBO J, issue.17, pp.4975-4986, 1998.

T. Yoshimoto, R. Walter, and D. Tsuru, Proline-specific endopeptidase from Flavobacterium. Purification and properties, J. Biol. Chem, issue.10, pp.4786-4792, 1980.

P. L. Mäkinen, K. K. Mäkinen, and S. A. Syed, An endo-acting prolinespecific oligopeptidase from Treponema denticola ATCC 35405: evidence of hydrolysis of human bioactive peptides, Infect. Immun, vol.62, issue.11, pp.4938-4947, 1994.

Y. Matsubara, T. Ono, S. Tsubuki, S. Irie, and S. Kawashima, Transient up-regulation of a prolyl endopeptidase activity in the microsomal fraction of rat liver during postnatal development, Eur. J. Biochem, vol.252, issue.1, pp.178-183, 1998.

K. Kristensson, M. Nygård, G. Bertini, and M. Bentivoglio, African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions, Prog. Neurobiol, issue.2, pp.152-171, 2010.

J. D. Lonsdale-eccles and D. J. Grab, Trypanosome hydrolases and the blood-brain barrier, Trends Parasitol, vol.18, issue.1, pp.17-19, 2002.

O. V. Nikolskaia, A. P. Lima, Y. V. Kim, J. D. Lonsdale-eccles, T. Fukuma et al., Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease, J. Clin. Invest, issue.10, pp.2739-2747, 2006.

D. J. Grab, J. C. Garcia-garcia, O. V. Nikolskaia, Y. V. Kim, A. Brown et al., Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells, PLoS Negl. Trop. Dis, issue.7, p.479, 2009.

P. E. Van-den-steen, I. Van-aelst, S. Starckx, K. Maskos, G. Opdenakker et al., Matrix metalloproteinases, tissue inhibitors of MMPs and TACE in experimental cerebral malaria, Lab. Invest, vol.86, issue.9, pp.873-888, 2006.

A. Hainard, N. Tiberti, X. Robin, D. M. Ngoyi, E. Matovu et al., Matrix metalloproteinase-9 and intercellular adhesion molecule 1 are powerful staging markers for human African trypanosomiasis, Trop. Med. Int. Health, vol.16, issue.1, pp.119-126, 2011.

G. D. Melo, M. Marcondes, and G. F. Machado, Canine cerebral leishmaniasis: Potential role of matrix metalloproteinase-2 in the development of neurological disease, Vet. Immunol. Immunopathol, 2012.

D. J. Grab, E. Nyarko, N. C. Barat, O. V. Nikolskaia, and J. S. Dumler, Anaplasma phagocytophilum-Borrelia burgdorferi coinfection enhances chemokine, cytokine, and matrix metalloprotease expression by human brain microvascular endothelial cells, Clin. Vaccine Immunol, vol.14, issue.11, pp.1420-1424, 2007.

J. M. Ndung'u, N. G. Wright, F. W. Jennings, and M. Murray, Changes in atrial natriuretic factor and plasma renin activity in dogs infected with Trypanosoma brucei, Parasitol. Res, issue.7, pp.553-556, 1992.

D. Tetaert, B. Soudan, G. Huet-duvillier, P. Degand, and A. Boersma, Unusual cleavage of peptidic hormones generated by trypanosome enzymes released in infested rat serum, Int. J. Pept. Protein Res, issue.2, pp.147-152, 1993.

M. Hublart, L. Lagouche, A. Racadot, A. Boersma, P. Degand et al.,

, Bull. Soc. Pathol. Exot. Filiales, vol.81, issue.3, pp.468-476, 1988.

R. E. Morty, P. Bulau, R. Pellé, S. Wilk, and K. Abe, Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts, Biochem. J, pp.635-645, 2006.

M. Koida and R. Walter, Post-proline cleaving enzyme. Purification of this endopeptidase by affinity chromatography, J. Biol. Chem, issue.23, pp.7593-7599, 1976.

A. Moriyama, M. Nakanishi, and M. Sasaki, Porcine muscle prolyl endopeptidase and its endogenous substrates, J. Biochem, vol.104, issue.1, pp.112-117, 1988.

R. E. Morty, J. D. Lonsdale-eccles, R. Mentele, E. A. Auerswald, and T. H. Coetzer, Trypanosome-derived oligopeptidase B is released into the plasma of infected rodents, where it persists and retains full catalytic activity, Infect. Immun, vol.69, issue.4, pp.2757-2761, 2001.

R. E. Morty, R. Pellé, I. Vadász, G. L. Uzcanga, W. Seeger et al., Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts, J. Biol. Chem, issue.12, pp.10925-10937, 2005.

R. E. Morty, E. Authié, L. Troeberg, J. D. Lonsdale-eccles, and T. H. Coetzer, Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense, Mol. Biochem. Parasitol, vol.102, issue.1, pp.145-155, 1999.

E. V. Caler, R. E. Morty, B. A. Burleigh, and N. W. Andrews, Dual role of signaling pathways leading to Ca(2+) and cyclic AMP elevation in host cell invasion by Trypanosoma cruzi, Infect. Immun, issue.12, pp.6602-6610, 2000.

A. M. Woolsey, L. Sunwoo, C. A. Petersen, S. M. Brachmann, L. C. Cantley et al., Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation, J. Cell. Sci, vol.116, pp.3611-3622, 2003.

I. Tardieux, M. H. Nathanson, and N. W. Andrews, Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients, J. Exp. Med, vol.179, issue.3, pp.1017-1022, 1994.

M. L. Dorta, A. T. Ferreira, M. E. Oshiro, and N. Yoshida, Ca2+ signal induced by Trypanosoma cruzi metacyclic trypomastigote surface molecules implicated in mammalian cell invasion, Mol. Biochem. Parasitol, vol.73, issue.1-2, pp.285-289, 1995.

R. C. Ruiz, S. Favoreto, M. L. Dorta, M. E. Oshiro, A. T. Ferreira et al., Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity, Biochem. J, pp.505-511, 1998.

J. Scharfstein, V. Schmitz, V. Morandi, M. M. Capella, A. P. Lima et al., Müller-Esterl, W. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors, J. Exp. Med, vol.192, issue.9, pp.1289-1300, 2000.

S. Tomlinson, F. Vandekerckhove, U. Frevert, and V. Nussenzweig, The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH, Parasitology, pp.547-554, 1995.

N. W. Andrews and M. B. Whitlow, Secretion by Trypanosoma cruzi of a hemolysin active at low pH, Mol. Biochem. Parasitol, vol.33, issue.3, pp.249-256, 1989.

V. Ley, E. S. Robbins, V. Nussenzweig, and N. W. Andrews, The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments, J. Exp. Med, vol.171, issue.2, pp.401-413, 1990.

L. C. Fernandes, I. M. Bastos, L. Lauria-pires, A. C. Rosa, A. R. Teixeira et al., Specific human antibodies do not inhibit Trypanosoma cruzi oligopeptidase B and cathepsin B, and immunoglobulin G enhances the activity of trypomastigote-secreted oligopeptidase B. Microbes Infect, vol.7, pp.375-384, 2005.
URL : https://hal.archives-ouvertes.fr/mnhn-02070115

R. E. Morty, L. Troeberg, J. C. Powers, S. Ono, J. D. Lonsdale-eccles et al., Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters, Biochem. Pharmacol, issue.10, pp.1497-1504, 2000.

R. E. Morty, L. Troeberg, R. N. Pike, R. Jones, P. Nickel et al., A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin, FEBS Lett, issue.3, pp.251-256, 1998.

R. T. Kangethe, A. F. Boulangé, V. Coustou, T. Baltz, and T. H. Coetzer, Trypanosoma brucei brucei oligopeptidase B null mutants display increased prolyl oligopeptidase-like activity, Mol. Biochem. Parasitol, vol.182, issue.1-2, pp.7-16, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00675697

R. T. Jacobs, B. Nare, and M. A. Phillips, State of the art in African trypanosome drug discovery, Curr. Top. Med. Chem, issue.10, pp.1255-1274, 2011.

J. C. Munday, K. Mcluskey, E. Brown, G. H. Coombs, and J. C. Mottram, Oligopeptidase B deficient mutants of Leishmania major, Mol. Biochem. Parasitol, vol.175, issue.1, pp.49-57, 2011.

R. K. Swenerton, S. Zhang, M. Sajid, K. F. Medzihradszky, C. S. Craik et al., The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion, J. Biol. Chem, vol.286, issue.1, pp.429-440, 2011.

R. Joyeau, C. Maoulida, C. Guillet, F. Frappier, A. R. Teixeira et al., Synthesis and activity of pyrrolidinyl-and thiazolidinyl-dipeptide derivatives as inhibitors of the Tc80 prolyl oligopeptidase from Trypanosoma cruzi, Eur. J. Med. Chem, vol.35, issue.2, pp.257-266, 2000.

A. López, T. Tarragó, and E. Giralt, Low molecular weight inhibitors of Prolyl Oligopeptidase: a review of compounds patented from, Expert Opin. Ther. Pat, vol.21, issue.7, pp.1023-1044, 2003.

A. M. Lambeir, Translational research on prolyl oligopeptidase inhibitors: the long road ahead, Expert Opin. Ther. Pat, vol.21, issue.7, pp.977-981, 2011.

A. Tsuji, T. Yoshimoto, K. Yuasa, and Y. Matsuda, Protamine: a unique and potent inhibitor of oligopeptidase B, J. Pept. Sci, vol.12, issue.1, pp.65-71, 2006.

F. J. Gamo, L. M. Sanz, J. Vidal, C. De-cozar, E. Alvarez et al., Thousands of chemical starting points for antimalarial lead identification, Nature, issue.7296, pp.305-310, 2010.

W. A. Guiguemde, A. A. Shelat, D. Bouck, S. Duffy, G. J. Crowther et al., Chemical genetics of Plasmodium falciparum, Nature, issue.7296, pp.311-315, 2010.

M. Rottmann, C. Mcnamara, B. K. Yeung, M. C. Lee, B. Zou et al., Science, issue.5996, pp.1175-1180, 2010.

F. N. Motta, C. Azevedo, C. N. Araújo, and J. Santana, Type I Collagen: Biological Functions, Synthesis and Medicinal Applications. Pinto, M.E.H.a.M, 2012.