P. Bastin, T. H. Macrae, S. B. Francis, K. R. Matthews, and K. Gull, Flagellar morphogenesis: protein targeting and assembly in the para­ flagellar rod of trypanosomes, Mol. Cell. Biol, vol.19, pp.8191-8200, 1999.

M. Bernstein, P. L. Beech, S. G. Katz, and J. L. Rosenbaum, A new kinesin­ like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum, J. Cell Biol, vol.125, pp.1313-1326, 1994.

M. Bonhivers, N. Landrein, M. Decossas, and D. R. Robinson, A mono­ clonal antibody marker for the exclusion­zone filaments of Trypanosoma brucei, Parasit Vectors, vol.1, p.21, 2008.

C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson et al., Conserved and specific functions of axoneme components in trypano­ some motility, J. Cell Sci, vol.119, pp.3443-3455, 2006.

R. Broadhead, H. R. Dawe, H. Farr, S. Griffiths, S. R. Hart et al., Flagellar motility is required for the viability of the bloodstream trypano­ some, Nature, vol.440, pp.224-227, 2006.

D. G. Cole, D. R. Diener, A. L. Himelblau, P. L. Beech, J. C. Fuster et al., Chlamydomonas kinesin­II­dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assem­ bly in Caenorhabditis elegans sensory neurons, J. Cell Biol, vol.141, pp.993-1008, 1998.

H. R. Dawe, M. K. Shaw, H. Farr, and K. Gull, The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules, BMC Biol, vol.5, p.33, 2007.

D. Escalier, New insights into the assembly of the periaxonemal struc­ tures in mammalian spermatozoa, Biol. Reprod, vol.69, pp.373-378, 2003.

C. Gadelha, B. Wickstead, P. G. Mckean, and K. Gull, Basal body and fla­ gellum mutants reveal a rotational constraint of the central pair micro­ tubules in the axonemes of trypanosomes, J. Cell Sci, vol.119, pp.2405-2413, 2006.

N. Hirokawa and Y. Noda, Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics, Physiol. Rev, vol.88, pp.1089-1118, 2008.

R. Ismach, C. M. Cianci, J. P. Caulfield, P. J. Langer, A. Hein et al., Flagellar membrane and paraxial rod proteins of Leishmania: characterization employing monoclonal antibodies, J. Protozool, vol.36, pp.617-624, 1989.

G. Jobb, A. Haeseler, and K. Strimmer, TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics, BMC Evol. Biol, vol.4, p.18, 2004.

L. Kohl, T. Sherwin, and K. Gull, Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle, J. Eukaryot. Microbiol, vol.46, pp.105-109, 1999.

L. Kohl, D. Robinson, and P. Bastin, Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes, EMBO J, vol.22, pp.5336-5346, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00108210

K. F. Lechtreck and G. B. Witman, Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility, J. Cell Biol, vol.176, pp.473-482, 2007.

K. F. Lechtreck, P. Delmotte, M. L. Robinson, M. J. Sanderson, and G. B. Witman, Mutations in Hydin impair ciliary motility in mice, J. Cell Biol, vol.180, pp.633-643, 2008.

Z. Li and C. C. Wang, KMP­11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei, Eukaryot. Cell, vol.7, pp.1941-1950, 2008.

H. Miki, Y. Okada, and N. Hirokawa, Analysis of the kinesin superfamily: insights into structure and function, Trends Cell Biol, vol.15, pp.467-476, 2005.

H. Philippe, MUST, a computer package of management utilities for sequences and trees, Nucleic Acids Res, vol.21, pp.5264-5272, 1993.

N. Portman, S. Lacomble, B. Thomas, P. G. Mckean, and K. Gull, Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum, J. Biol. Chem, vol.284, pp.5610-5619, 2009.

L. C. Pradel, M. Bonhivers, N. Landrein, and D. R. Robinson, NIMA­ related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, J. Cell Sci, vol.119, pp.1852-1863, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00215921

H. Qin, D. R. Diener, S. Geimer, D. G. Cole, and J. L. Rosenbaum, Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body, J. Cell Biol, vol.164, pp.255-266, 2004.

K. S. Ralston and K. L. Hill, The flagellum of Trypanosoma brucei: new tricks from an old dog, Int. J. Parasitol, vol.38, pp.869-884, 2008.

K. S. Ralston, A. G. Lerner, D. R. Diener, and K. L. Hill, Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an Cell fractionation 5 × 10 8 cells were harvested by centrifugation and washed once in PBS. The pellet was resuspended in 100 mM Pipes, 2 mM EGTA, and 1 mM MgSO 4 containing 1% Nonidet P40 and incubated for 2 min at room temperature to provide a cytoskeleton preparation, 1989.

. Kohl, The pellet was resuspended in PBS. Equal cell equivalents of each fraction were resolved by SDS-PAGE and subjected to on 10% SDS-PAGE gels. Proteins were transferred to nitrocellulose membranes (Hybond ECL Plus; GE Healthcare) and after blocking with 1% TBS-BSA, were incubated with anti-KIF9B antibody (1:500), anti-KIF9A antibody (1:500), vol.8, p.50, 1999.

S. Absalon, L. Kohl, C. Branche, T. Blisnick, G. Toutirais et al., Basal body positioning is controlled by flagellum formation in Trypanosoma brucei, PLoS One, vol.2, p.437, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00169134

S. Absalon, T. Blisnick, L. Kohl, G. Toutirais, G. Doré et al., Intraflagellar transport and functional analy­ sis of genes required for flagellum formation in trypanosomes, Mol. Biol. Cell, vol.19, pp.929-944, 2008.

S. Absalon, T. Blisnick, M. Bonhivers, L. Kohl, N. Cayet et al., Flagellum elongation is required for correct structure, orientation and function of the fla­ gellar pocket in Trypanosoma brucei, J. Cell Sci, vol.121, pp.3704-3716, 2008.

P. Bastin, T. Sherwin, and K. Gull, Paraflagellar rod is vital for trypano­ some motility, Nature, vol.391, p.548, 1998.

P. Bastin, T. J. Pullen, T. Sherwin, and K. Gull, Protein transport and fla­ gellum assembly dynamics revealed by analysis of the paralysed trypano­ some mutant snl­1, Eukaryot. Cell, vol.112, pp.696-711, 1999.

J. M. Scholey, Intraflagellar transport motors in cilia: moving along the cell's antenna, J. Cell Biol, vol.180, pp.23-29, 2008.

D. J. Sharp, G. C. Rogers, and J. M. Scholey, Microtubule motors in mito­ sis, Nature, vol.407, pp.41-47, 2000.

T. Sherwin and K. Gull, The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.323, pp.573-588, 1989.

J. J. Snow, G. Ou, A. L. Gunnarson, M. R. Walker, H. M. Zhou et al., Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons, Nat. Cell Biol, vol.6, pp.1109-1113, 2004.

Z. Wang, J. C. Morris, M. E. Drew, and P. T. Englund, Inhibition of Trypanosoma brucei gene expression by RNA interference using an inte­ gratable vector with opposing T7 promoters, J. Biol. Chem, vol.275, pp.40174-40179, 2000.

S. Whelan and N. Goldman, A general empirical model of protein evolu­ tion derived from multiple protein families using a maximum­likelihood approach, Mol. Biol. Evol, vol.18, pp.691-699, 2001.

B. Wickstead and K. Gull, A "holistic" kinesin phylogeny reveals new kinesin families and predicts protein functions, Mol. Biol. Cell, vol.17, pp.1734-1743, 2006.

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock­outs and dominant­negative genetics in Trypanosoma brucei, Mol. Biochem. Parasitol, vol.99, pp.89-101, 1999.

A. Woods, T. Sherwin, R. Sasse, T. H. Macrae, A. J. Baines et al., Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies, J. Cell Sci, vol.93, pp.491-500, 1989.

R. Yokoyama, E. O'toole, S. Ghosh, and D. R. Mitchell, Regulation of fla­ gellar dynein activity by a central pair kinesin, Proc. Natl. Acad. Sci. USA, vol.101, pp.17398-17403, 2004.