
HAL Id: hal-01235733
https://hal.sorbonne-universite.fr/hal-01235733

Submitted on 30 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Phylogeny of Dictyoptera: Dating the Origin of
Cockroaches, Praying Mantises and Termites with

Molecular Data and Controlled Fossil Evidence
Frédéric Legendre, André Nel, Gavin J. Svenson, Tony Robillard, Roseli

Pellens, Philippe Grandcolas

To cite this version:
Frédéric Legendre, André Nel, Gavin J. Svenson, Tony Robillard, Roseli Pellens, et al.. Phylogeny
of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecu-
lar Data and Controlled Fossil Evidence. PLoS ONE, 2015, 10 (7), pp.e0130127. �10.1371/jour-
nal.pone.0130127�. �hal-01235733�

https://hal.sorbonne-universite.fr/hal-01235733
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Phylogeny of Dictyoptera: Dating the Origin
of Cockroaches, Praying Mantises and
Termites with Molecular Data and Controlled
Fossil Evidence
Frédéric Legendre1*, André Nel1, Gavin J. Svenson2, Tony Robillard1, Roseli Pellens1,
Philippe Grandcolas1

1 Institut de Systématique, Evolution, Biodiversité, ISYEB—UMR 7205 MNHN, CNRS, UPMC, EPHE,
Sorbonne Universités, Muséum national d’Histoire naturelle, Département Systématique et Evolution, Paris,
France, 2 Department of Invertebrate Zoology, Cleveland Museum of Natural History, Cleveland, Ohio,
United States of America

* legendre@mnhn.fr

Abstract
Understanding the origin and diversification of organisms requires a good phylogenetic esti-

mate of their age and diversification rates. This estimate can be difficult to obtain when sam-

ples are limited and fossil records are disputed, as in Dictyoptera. To choose among

competing hypotheses of origin for dictyopteran suborders, we root a phylogenetic analysis

(~800 taxa, 10 kbp) within a large selection of outgroups and calibrate datings with fossils

attributed to lineages with clear synapomorphies. We find the following topology: (mantises,

(other cockroaches, (Cryptocercidae, termites)). Our datings suggest that crown-Dictyop-

tera—and stem-mantises—would date back to the Late Carboniferous (~ 300 Mya), a result

compatible with the oldest putative fossil of stem-dictyoptera. Crown-mantises, however,

would be much more recent (~ 200 Mya; Triassic/Jurassic boundary). This pattern (i.e., old

origin and more recent diversification) suggests a scenario of replacement in carnivory

among polyneopterous insects. The most recent common ancestor of (cockroaches + ter-

mites) would date back to the Permian (~275 Mya), which contradicts the hypothesis of a

Devonian origin of cockroaches. Stem-termites would date back to the Triassic/Jurassic

boundary, which refutes a Triassic origin. We suggest directions in extant and extinct spe-

cies sampling to sharpen this chronological framework and dictyopteran evolutionary

studies.

Introduction
Understanding the origin and diversification of organisms in their environmental context
requires a good estimate of their age and diversification rates. This objective is classically
achieved through analyses combining morphological and environmental data, molecular

PLOSONE | DOI:10.1371/journal.pone.0130127 July 22, 2015 1 / 27

OPEN ACCESS

Citation: Legendre F, Nel A, Svenson GJ, Robillard
T, Pellens R, Grandcolas P (2015) Phylogeny of
Dictyoptera: Dating the Origin of Cockroaches,
Praying Mantises and Termites with Molecular Data
and Controlled Fossil Evidence. PLoS ONE 10(7):
e0130127. doi:10.1371/journal.pone.0130127

Editor: Hector Escriva, Laboratoire Arago, FRANCE

Received: March 16, 2015

Accepted: May 18, 2015

Published: July 22, 2015

Copyright: © 2015 Legendre et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Molecular data are
held in the public database GenBank under the
Accession Numbers KP986236-KP986445.

Funding: This study was supported by Agence
Nationale de la Recherche under the grant
BIONEOCAL to PG (www.agence-nationale-
recherche.fr) and by the US National Science
Foundation under the grant DEB-1216309 to GJS
(www.nsf.gov/funding). Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation. Molecular analyses were partially funded

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130127&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.agence-nationale-recherche.fr
http://www.agence-nationale-recherche.fr
http://www.nsf.gov/funding


phylogenies, and the fossil record [1–3]. These analyses are, however, sometimes inconclusive,
especially when the fossil record is disputed, scarce or incomplete (a limitation inherent to fos-
sils) or when molecular phylogenies rely on limited samples [4–6]. Special attention must
therefore be paid to improve character and taxon sampling in phylogenies and to evaluate the
quality of the fossil record [7,8]. Despite these recommendations, obtaining additional data
may be difficult even with a strong sampling effort, especially for fossils for which complete
specimens in good state of preservation and phylogenetically relevant are not easily found. To
address these limitations and produce a robust analysis, several research strategies designed
recently include: integrating the quality of fossil record into the calibration [9,10]; basing dating
methods on statistical distributions to account for uncertainties [11]; and nesting the study in
a deeper group better-represented in the fossil record and including appropriate outgroups
[12–14].

These problems of incomplete or controversial fossil record and molecular phylogenies with
limited samples occur in different taxonomic groups. One patent example is Dictyoptera–an
insect group including cockroaches, praying mantises and termites, the latter being considered
recently as a suborder of Blattodea [15,16]. First, the oldest ‘Dictyoptera-like’ fossils would be
useful to date the oldest nodes but these fossils are controversial (see below). Thus, they cannot
be readily used and would instead require a re-examination with additional evidence or an
independent validation through dating estimates. Second, even though well-established molec-
ular phylogenies have been proposed for praying mantises and termites [17–19], phylogenies
including the three groups together had much smaller taxonomic and molecular samples and/
or did not incorporate attempts of calibration and datings [16,20]. These limitations impede
our understanding of dictyopteran evolution. Yet, the study of this charismatic group of
insects, which is deeply rooted in a long chronological timescale [21,22], could shed light on
the evolution of a variety of important traits from social or predatory behaviors, to digestive or
intracellular symbioses [17,18,23–25]. Our present study aims at understanding the origin of
these three groups by overcoming previous limitations in taxon and molecular samplings and
in fossil record.

Several hypotheses exist about the phylogenetic relationships of Dictyoptera or its suborders
[16–20,23,25–39]. These works were not all specifically dedicated to test hypotheses of dictyop-
teran relationships and therefore focused on different taxonomic and character samples. Con-
sequently, directly comparing these phylogenetic hypotheses is intractable but there is one
obvious conclusion: we still lack a robust consensus about dictyopteran phylogenetic relation-
ships. For the big picture, the most recent hypotheses converge toward the same general topol-
ogy for extant species (but see [40,41]): (Mantodea, (other Blattodea, (Cryptocercidae,
Isoptera))). However, no study has perfectly replicated previous independent results. In other
words, inter-familial relationships are still controversial (see [27]–their Fig 1). Within cock-
roaches, authors not only disagree about inter-familial relationships but also about family
delimitation. One can potentially postulate up to 11 extant cockroach families but we will fol-
low here Beccaloni and Eggleton [15]. The extant families used are: Blaberidae, Blattidae, Cryp-
tocercidae, Ectobiidae, Lamproblattidae, Nocticolidae, Corydiidae and Tryonicidae. Extinct
families also exist and some might rather be stem-Dictyoptera than cockroaches. In termites,
Mastotermitidae is undoubtedly sister-group to all other modern termites but disagreements
persist over the relationships between Archotermopsidae, Stolotermitidae and Kalotermitidae
[17,18,26,42]. As for praying mantises, the most comprehensive study to date [19] has cast seri-
ous doubts on traditional taxonomy with nearly half of the accepted families, subfamilies and
tribes recovered as non-monophyletic.

Since the nineteenth century, cockroaches are thought to be very ancient because of numer-
ous cockroach-like Palaeozoic and Mesozoic fossils (also called “roachoids”), and traditionally
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conceived as ancestral to termites and praying mantises [43–48]. The best preserved female
“roachoid” fossils show external ovipositors (long or short depending on the taxa), a morpho-
logical character that is never found in extant cockroaches. Moreover, other characters such as

Fig 1. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: mantises. Family names are labeled on the right of the
clades. Bootstrap support values are displayed for each node. * = non-monophyletic families.

doi:10.1371/journal.pone.0130127.g001
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wing venation (“roachoid” forewings are more frequently preserved than bodies and hindw-
ings) or mouthparts are often incomplete or difficult to interpret. Hence, the systematic rela-
tionships of “roachoid” fossils remain disputed. The question, still unresolved, is whether these
“roachoids” are indeed true cockroaches or rather a stem-group of Dictyoptera [23,49], even if
the Dictyoptera (including these “roachoids”) seems to be monophyletic, with the Palaeozoic
Paoliida as its sister group [50]. Placing these fossils requires an adequate outgroup sampling.

Mantises are understood to be much more recent than these “roachoids” according to the
fossil record (i.e. Early Jurassic; [25,51,52]). The most recent phylogenetic hypotheses postu-
late, however, that praying mantises are sister-group to the modern cockroaches or to all other
modern Dictyoptera [53]. The relatively young age of the crown group of praying mantises
would thus appear contradictory with the hypothesis that all the Palaeozoic and Early Mesozoic
“roachoids” could belong to the crown Blattodea. Recently, Béthoux and Wieland [54] and
Béthoux et al. [55] found that some Palaeozoic fossils belonging to the family Anthracoptilidae
could be stem-mantis lineages, sharing synapomorphic characters with modern praying man-
tises within the wings and maybe raptorial forelegs. This hypothesis would reconcile the latest
molecular phylogenies with the fossil record but it has also been disputed [56–58]. Notably, a
recent revision of the Anthracoptilidae [59] suggests that these fossils would belong to the Pao-
liida, the putative sister-group of Dictyoptera [50].

Finally, termites were always considered as a recent group according to a rich fossil record
(i.e. oldest record at the Jurassic/Cretaceous transition; [60–62]). Nevertheless, a few controver-
sial fossil nesting traces would indicate that they are at least 50 My older (i.e. Jurassic or even
Late Triassic; [63–67]). Here again, these hypotheses have been criticized [68] and would need
proper testing.

Because of these controversies in the fossil record and in phylogenetic hypotheses, these
three clades (i.e. cockroaches, praying mantises and termites) all have incongruent dates of ori-
gins. Here, we use a supermatrix strategy (about 800 taxa and 10,000 molecular characters)
combined with controlled fossil evidence (i.e. considering only fossils attributed to any lineage
with clear synapomorphic characters) to overcome the aforementioned limitations. We also
nest the strictly dictyopteran ingroup within a comprehensive selection of polyneopteran out-
groups for which dating analyses were already published. Thus, we provide a chronological
framework of dictyopteran evolution to better estimate the origin and timing of diversification
of cockroaches, termites, and praying mantises.

Materials and Methods

Taxonomic and character sampling
Given that the most recent molecular phylogenies dealing with all Dictyoptera sub-orders did
not sample more than 60 taxa [20,27,39,40], we urge at selecting as many taxa as possible and
not subjectively selecting a few of them. Consequently, our taxonomic sample includes 300
praying mantises, 276 termites, 193 cockroaches, and 24 outgroup species, for a total sample
size of 793 species. Data are primarily derived from our own works [18,19,25,69,70,71], and
Inward’s works on cockroaches and termites [16,17]. We favor here a “supermatrix” rather
than a “supertree” approach [72–74]. We supplemented this dataset by generating 210 cock-
roach sequences to improve their representativeness and with data available on GenBank, pro-
viding that at least three markers were included for each species in the analysis, to limit
potential reconstruction artifacts due to missing data. For the generated sequences, we notably
focused on families and subfamilies that were previously poorly sampled including: Blattidae
(25 species), Pseudophyllodromiinae (10 species), Corydiidae (four species), Nocticolidae (one
species), Anaplectinae (one species) and Lamproblattidae (one species). All newly generated
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sequences were submitted to GenBank and their accession numbers (KP986236-KP986445)
are provided in S1 Table. Molecular protocols are detailed in Legendre et al. [18].

For character sampling, we selected molecular markers that were documented for at least
50% of the taxa, which includes four mitochondrial [12S rRNA (~ 380 bp), 16S rRNA (~ 480
bp), and cytochrome oxidase subunits I (~ 1280 bp) and II (~ 650 bp)–hereafter COI and
COII] and two nuclear markers [18S rRNA (~ 1800 bp) and 28S rRNA (~ 2000 bp)]. The full
data set includes 3674 sequence fragments from these six loci. We sampled 92.7% of the taxa
for the 12S, 66.8% for the 16S, 58.6% for the COI, 89.9% for the COII, 69.4% for the 18S and
85.9% for the 28S. We sampled 41.1% of the taxa for the six markers, 11.5% for five markers,
17% for four markers and 30.4% for three markers. The intensity of data completeness within
each suborder differs: 96% of praying mantises are documented for at least five markers,
whereas it concerns 35% and 17% of cockroaches and termites, respectively. Details are pro-
vided in S1 Table.

For outgroup comparison we used modern taxa belonging to the different polyneopteran
clades (Dermaptera, Embioptera, Grylloblattodea, Mantophasmatodea, Orthoptera, Phasmato-
dea, and Plecoptera) and Ephemeroptera as rooting outgroups [53]. Zoraptera affinities are not
clear [53] and recent works postulate that they could be the sister-lineage of Dictyoptera
[75,76]. Thus, we initially included a Zoraptera species (Zorotypus novobrittanicus) within
outgroups. It was, however, removed from final analysis because, in preliminary analyses, Z.
novobrittanicus was included within Blattodea as the sister lineage of Xestoblatta sp.1, which
was undoubtedly artifactual (likely due to contamination issues in molecular sequences; S.
Cameron, pers. comm.). We therefore removed Z. novobrittanicus from the dataset based on
its behavior as a wildcard taxon in our analyses.

Alignments and phylogenetic analyses
We used the software MUSCLE 3.8 [77] to align molecular sequences. Because the sequences
used here come from different studies and were thus generated with an assortment of primers,
the fragments were not always congruent in coverage, which generated a few dubious align-
ments for some sequences in the terminal regions. We corrected these problems by refining the
alignment manually. We also checked that alignments for protein-coding genes were congru-
ent with codon reading frame using BioEdit 7.0.5.3 [78]. As described in Legendre et al. [18],
28S rRNA was partitioned into four sequences to optimize automatic alignment with MUSCLE
and to limit eye-driven homology hypotheses correction. We used the software SequenceMa-
trix 1.7.7 [79] to concatenate the supermatrix. It resulted in a final alignment of approximately
10 kbp (S1 Dataset).

Maximum likelihood analyses were conducted using RAxML 7.2.8 [80] with a GTR + Γ
model. We did not consider models mixing a proportion of invariant sites (I) with a gamma
distribution shape parameter (Γ) because these two parameters are strongly correlated [81],
which could bias the estimation of these parameters. We used Mrmodeltest 2.3 [82] under the
Akaike Information Criterion [83,84], which selected the GTR + Γmodel as the most appropri-
ate model that does not combine I and Γ. We first run separate analyses to check for obvious
artifacts or contaminations. We then performed 100 ML replicates using the rapid hill-climb-
ing algorithm on the combined dataset and the optimal solution was selected. Suboptimal solu-
tions were kept to run dating analyses on and to obtain confidence intervals (see below). We
estimated support values based on 100 bootstrap replicates using the rapid bootstrap algorithm
[85] implemented in RAxML. All analyses were performed on a HP Z800 Workstation with
17.9 GB RAM and an Intel Xeon CPU E5520, using six or seven threads.

Phylogeny and Evolution of Dictyoptera
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Bayesian Inference via MrBayes was performed on both the cluster of the Paris Museum
and the Cleveland Museum of Natural History analytical server, but both were hampered by
memory limitations and time to complete the analyses. It was thus impossible to include such
analyses in spite of calculation attempts of several months.

Fossil calibrations and molecular datings
Uncertainties about the timing of diversification in Dictyoptera are due in part to incomplete
or controversial fossils. We did not use these controversial fossils but tested them with a con-
servative approach, wherein the possibility to infer old age estimates was kept as follows.

First, we placed a maximal age constraint at the root, which corresponds to the differentia-
tion between Palaeoptera and Neoptera, of 470 Mya. This value corresponds to the maximum
of the 95% confidence interval inferred in Rehm et al. [86] in their dating of the Arthropod
tree. This is a very old limit given that the Palaeoptera/Neoptera diversification is commonly
thought to have occurred around 400 Mya [87]. Using a maximal age constraint at the root is a
common strategy used to avoid artifactual old age estimates of the root with the PL method
[88].

Second, we used 17 fossils as minimum age constraints as calibration points (Table 1). We
chose these fossils because we considered that we were able, according to their descriptions, to
reliably assign them to a node in our recovered phylogeny. Fossils that could not be assigned
unambiguously to a particular lineage (e.g., no accurate synapomorphy of the concerned clade
in the description of the fossil) were not included [8]. In particular, fossils from extinct “roa-
choid” families (e.g., Mesoblattinidae, Phylloblattidae) are among those not included in our
calibration points. One fossil (Arverineura insignis) has a peculiar situation because both its
placement as stem Chaeteessidae and the position of Chaeteessa valida (single Chaeteessidae
sampled here) in the phylogeny (see below) can be criticized. Arverineura insignis is only
known by a forewing and its venation is nearly identical to that of Chaeteessa valida so that Nel
and Roy [89] suggested they could be the same genus. The presence of an oblique pseudo-vein
(stigma of [90]) in the mid part of the forewing or the fact that the most posterior branch of
CuA is simple could be apomorphies, but the polarization of these character states remains an
issue. We thus also ran additional dating estimates without Arverineura insignis to check if its
inclusion in the analyses had an impact or not.

Molecular dating analyses were computed with r8s 1.71 [91]. As for phylogenetic recon-
structions, it was impossible to compute divergence estimates in a bayesian framework due to
computational limitations, a problem faced in other studies with large taxon sample (e.g.,
[92,93]). In addition, multiple empirical studies at different scales (e.g., [94–96]) suggest that
r8s estimates usually strongly overlap with BEAST estimates [97], especially with low values of
smoothing, for which much rate variation is permitted (i.e. non-clocklike data). Finally, auto-
correlated models proved to have a higher statistical fit to the data than uncorrelated models
[98,99].

We used ML trees with the penalized likelihood (PL) method [100] using the TN algorithm
and a logarithmic penalty function. A cross validation procedure was performed to choose the
optimal value of smoothing. Nevertheless, after more than a month of analysis, only three
smoothing parameter values have been tested during this procedure. Therefore, we decided to
follow two alternative, quicker, strategies. First, we ran two cross validation procedures with an
additive penalty function (four smoothing values, λ, between 1 and 1000, and five smoothing
values between 1 and 2.5 – values of λ< 1 were also tested but the analyses failed, which is a
known possible issue of the algorithm with extremely low smoothing parameters [100]). In
both cases, a rate smoothing parameter of 1 had the lowest chi-square value. Second, with a
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Table 1. Details about the fossils used as calibrations (minimal ages) in the dating analyses.

Species Age
(Ma)

Phylogenetic
position

Reference Museum specimen
number

Apomorphy Locality and
stratigraphy

Reference
to a
published
age

Gulou carpenteri 315 stem Plecoptera [134] CNU-NX1-143 Presence of a broad MP/
CuA and CuA/CuP areas
in forewings, with a
series of parallel simple
crossveins

Qilianshan entomofauna,
locality of Xiaheyan
Village (Zhongwei City,
Ningxia Hui Autonomous
Region, China); Tupo
Formation,
Pennsylvanian strata,
Bashkirian

[135]

Qilianiblatta
namurensis

315 stem Dictyoptera [124] GMCB 04GNX1001-1 Presence of a deeply
concave CuP in forewing
[50]

Qilianshan entomofauna,
locality of Xiaheyan
Village (Zhongwei City,
Ningxia Hui Autonomous
Region, China); Tupo
Formation,
Pennsylvanian strata,
Bashkirian

[135]

Juramantophasma
sinica

158 stem
Mantophasmatodea

[118] NIGP 142171 (Nanjing
Institute of Geology and
Palaeontology, Chinese
Academy of Sciences)

A third tarsomere with a
sclerotized elongated
dorsal process; enlarged
and fan-like pretarsal
arolia with a clearly
visible row of dorsal
setae; last tarsomere
making a right angle with
the others, keeping it up
in the air; female
gonoplacs (valves 3)
short and claw-shaped;
and egg with a circular
ridge

Daohugou, Ningcheng
County, Inner Mongolia,
NortheastChina;
Jiulongshan Formation,
Middle Jurassic
(Callovian/Oxfordian)

[136]

Mastotermes
nepropadyom

140 stem
Mastotermitidae

[62] PIN 4626/156 (Moscow) Hindwing with
Mastotermes-like anal
field

Chernovskie Kopi, Chita
Region, Chita District, left
bank (stream side) of the
Ingoda River; Doronino
Formation,
Chernovskaya
transitional sequence;
Upper Jurassic–Lower
Cretaceous.

[137]

Piniblattella vitimica 130 stem Ectobiidae [122] PIN 1989/1639, 1646
(Moscow)

Fanlike fold in hind wings
(when present) does not
include the first four rami;
conspicuous tergal
glands (not in all but only
in some Ectobiidae)

Baissa (Russia), Zaza
formation; Lower
Cretaceous, supposedly
earliest Berriasian-
Valanginian

[138]

Cretaholocompsa
montsecana

125 stem
Holocompsinae

[121] LC-1704-IEI No vein in medio-distal
part of forewings

La Cabrua outcrop,
Sierra del Montsec
(Spain); Pedrera de
Rubies Formation,
Barremian

[139]

Cratokalotermes
santanensis

112 stem Kalotermitidae [140] SMNS 66195 Crowded radial field and
long cubital field (extends
to near the apex of the
wing)

Crato, Santana
Formation (Brazil), Early
Cretaceous (Aptian)

[139]

Morphna paleo 62 stem asian
Epilamprinae

[141] PIN 5142/12 The combination of
parallel forewing margins,
wide and branched Sc,
fusion of M with CuA
running close to R,
basalmost branches of
CuA running parallel to
CuP and simple A

Archara-Boguchan, Far
East, Russia; Tsagayan
Formation, Danian
Paleocene

[142]

(Continued)
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Table 1. (Continued)

Species Age
(Ma)

Phylogenetic
position

Reference Museum specimen
number

Apomorphy Locality and
stratigraphy

Reference
to a
published
age

Arverineura insignis 60 stem
Chaeteessidae

[89] MNHN-LP-R.07020
(specimen 715, Piton coll.)

Presence of an oblique
pseudo-vein in the mid
part of the forewing?
most posterior branch of
CuA simple? *

Menat (France), Menat
Formation (Piton
collection), Thanetian

[143]

Prochaeradodis
enigmaticus

60 stem
Choeradodinae

[89] MNHN-LP-R-07003 Broad side lobes of the
pronotum and reticulated
forewing with a very wide
costal area.

Menat (France), Menat
Formation (Piton
collection), Thanetian

[143]

Nanotermes isaacae 50 stem Termitidae [144] BSIPL Tad-262 (Lucknow,
India)

Radial vein simple
+ reduction of M + CuA
with a series of simple
posterior branches

Tadkeshwar lignite mine
(India: Gujarat); Cambay
Formation, Ypresian

[145]

Archotermopsis
tornquisti

41 crown
Archotermopsidae

[60,61,126,146] 1133, Typ. Kat. Nr. 255 Absence of ocelloids and
fontanelle, antennae with
22–27 articles, pronotum
distinctly narrower than
head, tarsi pentamerous
(sometimes cryptically),
fourth sternite with sole
sternal gland, forewing
scale overlapping hind-
wing scale, humeral
margin of scale flat,
imago-worker mandibles
with three marginal teeth
(left side) and subsidiary
tooth between apical and
first marginal teeth (right
side)

Kaliningrad (Russian
Federation); Baltic
amber, middle Eocene
(Lutetian)

[147]

Heterotermes
eocenicus

41 stem Heterotermes [148] B-163 Wing membrane setae
present, microsetulose
+ Imago compound eye
small, not protruding
beyond lateral margin of
head in frontal view
+ Imago ocelloid small,
ca. 2–3x diameter of
compound eye facet

Kaliningrad (Russian
Federation); Baltic
amber, middle Eocene
(Lutetian)

[147]

Ulmeriella rubiensis 28 stem
Hodotermitidae

[149] B-72 One (or two) posterior
branch(es) subapical of R
and well-developped

Ruby River Site 1,
Montana (USA);
Passamari Formation,
Rupelian

[150]

Dolichorhinotermes
apopnus

20 stem
Dolichorhinotermes

[151] AMNH Ch-50—Amber
Fossil Collection, Division of
Invertebrate Zoology,
American Museum of
Natural History

Imago with third flagellar
article shorter than first
flagellar article. Major
soldier with labrum
distinctly elongate, apex
of labrum frequently
extending to mandibular
apex. Minor soldier with
opening of frontal gland
at front of head but not
on conspicuous
prolongation of head
capsule; mandibles
vestigial, with rounded
margins; sides of head in
dorsal aspect straight or
convex

Simojovel (Mexico:
Chiapas), Chiapas
amber; Early Miocene

[152]

(Continued)
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logarithmic penalty function, we performed ten dating analyses with different smoothing
parameter values (1, 10, 35, 50, 80, 125, 200, 400, 900 and 2000) to check how this parameter
impacts the dating estimates, especially for the deepest nodes as they are the most important
for our study. We selected this intermediate range of smoothing values because it is generally
with these values that cross validation scores are most optimal [88,100]. The biggest date esti-
mate difference uncovered between different smoothing values was of 22 My for the deepest
nodes, with older age estimates corresponding to lower smoothing values (S2 Table). This dif-
ference was considered as relatively low. Then, to perform the subsequent dating analyses, we
chose a smoothing value of 1. This choice results from the cross validations and fits our conser-
vative approach of hypotheses testing because smaller values of smoothing resulted in older
age estimates for our data.

Note that the PL method cannot deal with very short branches (smaller than 0.0000099 for
our trees; [101]). Consequently, for each tree used in dating analysis, and following the recom-
mendation found in r8s manual, we removed these very short branches using the R package
ape (command ‘drop.tip’; [102]). Taxa supported by these very short branches have been iden-
tified and reported in a tab delimited file, which was imported into R. This file and the script
used afterwards are provided in Supporting Information (S1 and S2 Methods). These few
branches (mean +/- SD = 9 +/- 2) were mainly terminal branches leading to species represent-
ing genera with multiple representatives, so their exclusion did not impact on generic sampling
and dating estimates.

Finally, we estimated approximated 90% confidence intervals by repeating the dating proce-
dure 100 times with 100 trees coming from our 100 ML analyses (see Alignments and phyloge-
netic analyses). We thus took into account potential sources of error in dating estimates due to
phylogenetic uncertainty (both in tree topology and branch lengths). These confidence inter-
vals were calculated using the R package Locfit [103] and following the procedure detailed in
Lopez-Vaamonde et al. [104].

Table 1. (Continued)

Species Age
(Ma)

Phylogenetic
position

Reference Museum specimen
number

Apomorphy Locality and
stratigraphy

Reference
to a
published
age

Holocompsa nigra
and H. abbreviata

15 stem Holocompsa [153] NMNH, no. 502411, Acc.
371428, Woodruff (collection
reg.) 3751, Brodzinsky /
Lopes-Pena Collection (H.
nigra) / NMNH, no. 504367,
Acc. 371428, Woodruff
(collection reg.) 8813,
Brodzinsky / LopesPena
[Penha] Collection

Head with a two-parts
very large clypeus
reaching the antennal
sockets, small body size,
hind wings with
specialized venation

Dominican amber
(USNM Brodzinsky
Lopez-Pena coll);
Miocene, Burdigalian/
Langhian

[154]

Constrictotermes
electroconstrictus

15 stem
Constrictotermes

[155] AMNH DR-14-584 Head constricted,
characteristic of
Constrictotermes

Dominican Republic
amber, specific locality
not known; Miocene,
Burdigalian/Langhian

[154]

* the oblique pseudo-vein in the mid part of the forewing is reduced in the Mantoididae and of different shape in Metallyticus. The most posterior branch of

CuA is not simple in the Mantoididae and of different shape in Metallyticus [90,156].

doi:10.1371/journal.pone.0130127.t001
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Results

Phylogenetic analyses
The most likely tree (Figs 1–8; ln L = -627407.49) recovered Dictyoptera, Mantodea and Iso-
ptera as monophyletic groups with maximal support values (i.e. bootstrap support of 100),
whereas Blattodea was paraphyletic. The group (Blattodea + Isoptera) was monophyletic with
a high support value (BS = 86). Our results were congruent with the most recent hypotheses
about inter-order relationships. Even though our aim was not to propose a classification, we
found some original intra-ordinal relationships detailed hereafter.

The early branching order of Mantodea (Figs 1–3) included a monophyletic Mantoididae
with Metallyticidae (BS< 50) while Chaeteessidae was deeply nested within Amelinae. Most
of the families were recovered as paraphyletic including Hymenopodidae, Mantidae, Thespi-
dae, Iridopterygidae, Liturgusidae, Amorphoscelidae, and Tarachodidae. Few families were
monophyletic, which include Acanthopidae (BS = 95), Empusidae (BS = 99), Eremiaphilidae
(BS = 100), Mantoididae (BS = 100), Metallyticidae (BS = 100) and Toxoderidae (BS = 87).

Blattodea (Figs 4 and 5) split up into two groups. One group was monophyletic (BS = 60)
and included Ectobiidae and Blaberidae. The other group was paraphyletic and included Cory-
diidae, Nocticolidae, Blattidae, Tryonicidae, Lamproblattidae, and Cryptocercidae. In the first
group, Anaplectinae–represented only by Anaplecta sp.–was nested within Ectobiidae, as sister
taxon of several Pseudophyllodromiinae. Blaberidae was monophyletic with a high support
value (BS = 93), whereas Ectobiidae was paraphyletic. In the second group, the monophyletic
Nocticolidae was closely related to Latindiinae within Corydiidae, which is paraphyletic. Lam-
problatta sp. was the sister taxa of (Cryptocercus spp. + Isoptera) but this relationship was not
well-supported (BS = 51). The clade (Tryonicus parvus + Lauraesilpha sp.) was sister taxa to a
clade comprising the Blattidae and the remaining Tryonicidae, a result weakly supported
(BS< 50). The monophyly of (Blattidae + Tryonicidae) excluding Tryonicus parvus and Laur-
aesilpha sp. was highly supported (BS = 100), as was the sister-group relationship of Cryptocer-
cidae with Isoptera (BS = 100).

Within termites (Figs 6–8), Mastotermitidae was sister-group to all other modern termites
with maximal support value. Then, the clade (Hodotermitidae + Archotermopsidae + Stoloter-
mitidae), which was highly supported (BS = 100), was sister-group to all the remaining ter-
mites. Kalotermitidae was monophyletic (BS = 100) and was sister-group to (Rhinotermitidae
+ Termitidae), a result highly supported (BS = 100). Serritermitidae (here Serritermes serrifer
and Glossotermes oculatus) was monophyletic (BS = 100) and was nested within paraphyletic
Rhinotermitidae.

Finally, from the global picture, we noted that internal branches within Blattodea were, with
our data set, longer than those within Mantodea and Isoptera. In particular, there were two
remarkable clades with long branches: one within Ectobiidae (Fig 4) and the other within (Cor-
ydiidae + Nocticolidae) (Fig 5). The first one mainly dealt with Pseudophyllodromiinae; the
second one dealt with Latindiinae and Nocticolidae species.

Dating analyses
Our dating estimates are provided as a simplified chronogram in Fig 9. They suggested that
stem-Dictyoptera would date back to the Middle-Late Devonian (mode = 382 Mya
range = 363–386.4 Mya). Crown-Dictyoptera would have originated around the Carbonifer-
ous/Permian boundary (mode = 300.7 Mya; range = 293.7–315.1 Mya). Crown-group
diversification of praying mantises would have occurred in the Early-Middle Jurassic
(mode = 191.8 Mya; range = 164.3–203.7 Mya). Stem-termites would date back to the Early

Phylogeny and Evolution of Dictyoptera

PLOS ONE | DOI:10.1371/journal.pone.0130127 July 22, 2015 10 / 27



Fig 2. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: mantises (continued). Legend as in Fig 1.

doi:10.1371/journal.pone.0130127.g002
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Jurassic (mode = 192.2 Mya; range = 187.7–198.4 Mya). Crown termites diversification
would date back to the Late Jurassic (mode = 151.3 Mya; range = 149.3–153.7 Mya). Finally,
the most recent common ancestor of (Blattodea + Isoptera) would date back to the Permian
(mode = 270.9 Mya; range = 263.6–283.2 Mya). Results without the fossil calibration based on
Arverineura insignis (stem Chaeteessidae node) were very similar (dating estimates difference
of 2.3 Mya at most).

Discussion

Dictyopteran phylogenetic relationships
Dictyoptera is monophyletic, which is a hypothesis supported by multiple morphological and
molecular studies (e.g., [32,49,105–108]). Within Dictyoptera, intra-ordinal relationships are
congruent with the most recent molecular phylogenetic studies [16,20,39] with monophyletic
praying mantises and termites, and paraphyletic cockroaches. For these three groups, we face
different situations from a taxonomic and character samplings point of view when compared
with previous molecular studies: our praying mantis data set is mainly a subsample of Svenson
andWhiting [19]; our termite data set is mainly a combination of Inward et al. [17] and Legen-
dre et al. [18]; our cockroach data set brings several new taxa. Consequently, our phylogenetic
results are more worth discussing for cockroaches and termites than for praying mantises.

Fig 3. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: mantises (continued). Legend as in Fig 1.

doi:10.1371/journal.pone.0130127.g003
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The recovery of paraphyly in many of the higher-level groups of Mantodea is not surprising
and congruent with previous studies [19,25]. The major clades, which mostly include paraphy-
letic groups of families, subfamilies and tribes, are not significantly different from those found
by Svenson andWhiting [19], and the composition of the clades is largely the same. However,
the branching of these major clades as well as the early branching order of Chaeteessidae, Man-
toididae, and Metallyticidae are different in our results. The recovery of Metallyticidae with
Mantoididae is unique to our study and may have resulted from the influences of outgroup
sampling and the dubious placement of Chaeteessidae. The latter issue was also found in previ-
ous analyses [71] and it seems to resolve better with more data [19]. Regardless of the various
topological differences between our phylogeny and the one published by Svenson and Whiting
[19], the classification is at odds with the molecular and morphological phylogenies (see [90]).

Within cockroaches, we find two main groups. In the Blaberoidea clade, the Blaberidae fam-
ily is monophyletic and sister-group of an assemblage of some Ectobiidae subfamilies, the Ecto-
biidae being paraphyletic. This pattern, apart from the phylogenetic position of Anaplectinae
that has rarely been investigated, was repeatedly suggested in the recent molecular literature
[16,20,27,39,41] even though the topologies found all differ and are never consistent with the
patterns of Ectobiidae paraphyly as previously proposed on a morphological basis [23,30–
32,36]. Anaplectinae is here nested within Ectobiidae, whereas it was placed as sister-group of

Fig 4. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: cockroaches. Legend as in Fig 1.

doi:10.1371/journal.pone.0130127.g004
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all other Blaberoidea (i.e. Blaberidae + Ectobiidae) on a morphological basis [23,32,36], or with
a close affinity to (Cryptocercidae + Isoptera) or Tryonicidae [20]. A larger sampling of this
worldwide subfamily is required to assess and discuss further its phylogenetic position. In the
second clade, Nocticolidae and Latindiinae are monophyletic, whereas Corydiidae is paraphy-
letic. A close relationship between these three lineages was suggested by Grandcolas [23] on the
basis of morphological characters, and also found more recently with molecular and morpho-
logical data [20]. Tryonicidae are not monophyletic, as in Murienne [37] but contrary to
Grandcolas [109]. Nevertheless, the sister-group relationship between Tryonicus and Laurae-
silpha is congruent with Grandcolas [109], Murienne et al. [110] and Murienne [37]. The Blat-
tidae and the remaining Tryonicidae form a well supported group with a phylogenetic position
compatible with the one found in Inward et al. [16], but not with the phylogenetic hypothesis
of Murienne et al. [110] or Djernaes et al. [20,27]. The phylogenetic position of Lamproblatta
as sister-group to (Cryptocercus + Isoptera) is an original, unexpected and poorly supported
result, which would deserve further investigation as Lamproblattidae species are too rarely
included in phylogenetic analyses, especially with molecular data (but see [20,23,27,32]). Cryp-
tocercidae is monophyletic and sister-group of Isoptera, a result congruent with most recent
molecular analyses (e.g., [16,18,26,42,107]) but contrasting with Gäde et al. [111] and Grand-
colas [23,112].

Within termites, our analyses suggest that (Archotermopsidae + Stolotermitidae + Hodoter-
mitidae) is sister-group to all termites but Mastotermitidae ([17,26,42] but contra [18]). It is
the first time that such a relationship is strongly supported with both molecular data and more
than four species. Serritermitidae is nested within Rhinotermitidae as sister-group of Termito-
geton, a result already found in Inward et al. [17], Legendre et al. [113] and Bourguignon et al.
[26].

Two clades within Dictyoptera are particularly worth noticing given their very long
branches: Ectobiidae and (Corydiidae + Nocticolidae). These long branches suggest dramatic
evolution rate changes within these cockroach clades for some or all of the molecular markers

Fig 5. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: cockroaches (continued). Legend as in Fig 1.

doi:10.1371/journal.pone.0130127.g005
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used. This phenomenon should be investigated further and be considered in future phyloge-
netic studies of cockroaches as it might affect tree reconstruction [114–116].

Timing of diversification in Dictyoptera and fossil data
We used a conservative approach allowing old age estimates with double-checked fossils and a
large phylogenetic sample to illuminate the timing of diversification of Dictyoptera and of its
three sub-orders (i.e. Blattodea, Mantodea and Isoptera). This approach aimed at testing
whether the presumptive old ages of each sub-order could be confirmed or refuted. We tested
(1) the origin and diversification of praying mantises, with regard to recent but controversial
fossil data that pushed back the origin of this group for more than 150 My [54]; (2) the origin
of Blattodea, which provides a chronological framework to fit Palaeozoic and Mesozoic “roa-
choids” in; (3) the origin of termites, which brings substantial information about eusociality
evolution.

Fig 6. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: termites. Legend as in Fig 1.

doi:10.1371/journal.pone.0130127.g006
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Fig 7. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: termites (continued). Legend as in Fig 1.

doi:10.1371/journal.pone.0130127.g007
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Timing of diversification in praying mantises and palaeoecological
implications
Whereas the origins of praying mantises have been thought to be rather recent (~ 150 Mya–
Grimaldi, 2003), it has been dramatically pushed back in time following recent fossil discover-
ies. The Late Carboniferous-Early Permian origin of crown-Dictyoptera inferred here is
compatible with the Carboniferous Anthracoptilidae, the putative stem-mantodeans (~310
Mya; [54,55]). However, this compatibility does not resolve the debate concerning the interpre-
tation of these fossils (e.g., [56–59]), in which some authors suggest that they rather belong to
Hypoperlida or Eoblattidae. Moreover, our recovered estimates are significantly older than
those recovered by Svenson and Whiting [19] and Misof et al. [117], where stem-mantises
dated to the Triassic-Jurassic boundary (~ 200 Mya) and crown diversification occurred in the
Late Jurassic (~150 Mya; [19]) or even sooner [117]. If we ignore Anthracoptilidae, the Jurassic
diversification of crown-mantises recovered here is congruent with the palaeontological dating
of the oldest fossil record [87].

Even though stem-mantises would date back to the Late Carboniferous, our results suggest
that crown-mantis diversification would have occurred much more recently, in the Early-Mid-
dle Jurassic. This pattern of old origin and much more recent diversification is puzzling but it
could be related to their major life history trait: carnivory. Before the Jurassic, there were sev-
eral carnivorous lineages, including several polyneopterans. Among these lineages, Titanoptera
is extinct, only known from the Triassic. Mantophasmatodea was present (and may have flour-
ished) before the diversification of the crown-mantises [118]. Some Palaeozoic and Early

Fig 8. Result of the concatenated analysis of six molecular markers in Maximum Likelihood: termites (continued). Legend as in Fig 1.

doi:10.1371/journal.pone.0130127.g008
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Mesozoic “roachoids” (Raphidiomimoidea) were also probably carnivorous. Our dating esti-
mates suggest that the crown-mantises would have postdated all these polyneopteran carni-
vores, a scenario of ‘ecological succession’ already hypothesized by Gorochov [119]. Given the
controversial nature of anthracoptilids around both their taxonomic affinity and their posses-
sion of raptorial forelegs [56], we cannot confirm whether raptorial legs were already present
in stem-mantis lineages or if it is a crown-mantis apomorphy that would have been a key
acquisition for their diversification, after competitors had disappeared.

Cockroaches, “roachoids” and the putative sister-taxon of Dictyoptera
Numerous and diverse “roachoid” fossils, with or without any external ovipositor, are known
from at least the Westphalian (~315 Mya–Carboniferous; [120]) to the Early Cretaceous peri-
ods (~130 Mya; [87]). But their taxonomy and phylogenetic affinities to extent Dictyoptera is
ambiguous [23,49]. As for modern cockroaches, all of which lack external ovipositors, their
oldest fossils date back to the Early Cretaceous period (~ 120 Mya; [87,121,122]). Modern
cockroaches are hence thought to have their origin in the Jurassic [87] but previous dating esti-
mates suggest a much broader range (see for example [21,86]).

We postulate here an origin of crown-Dictyoptera in the Late Carboniferous or Early Perm-
ian (293.7–315.1 Mya), which is older than commonly thought (e.g., ~ 200 Mya in [87,117]), if
one does not consider the disputed “roachoids” and Anthracoptilidae that we have discussed
above. This age is congruent with the presence of “blattoid” ootheca in the Late Carboniferous,

Fig 9. Simplified chronogram obtained in Penalized Likelihood dating analyses.Grey bars represent approximated 90% confidence intervals.

doi:10.1371/journal.pone.0130127.g009
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suggesting that Dictyoptera with reduced ovipositors were already present at that time, coexist-
ing with “roachoids” with long external ovipositors [123]. This result, however, is much youn-
ger than some “roachoid” fossils and clearly invalidates the hypothesis suggesting that winged
“blattoids” would date back to the Devonian [124]. We thus can reduce the chronological win-
dow associated to Dictyoptera diversification according to fossils of disputed taxonomic attri-
bution. Nevertheless, some old “roachoid” fossils remain compatible with our dating estimates
and would deserve further investigation before any conclusions are drawn about their phyloge-
netic affinities. Hopefully, new specimens and modern tools may help revealing new characters
and assessing intra- and inter-specific variation in wing venation for more accurate interpreta-
tions [125]. They could allow assessing what are the relationships between these “roachoids” of
the stem-Dictyoptera and the crown Blattodea and/or crown Mantodea.

We estimated that stem-Dictyoptera dated back to the Middle-Late Devonian (~375 Mya).
This estimate is congruent with datings provided in a large-scale phylogenomic study ([86],
but see [117]). It is also congruent with the hypothesis suggesting that Paoliida, a Palaeozoic
insect group, would be sister-group to Dictyoptera [50].

Origin of termites and the evolution of eusociality
There is a debate around the origin of termites, which are classically thought to date back to
the Late Jurassic (150–160 Mya; [26,87,126]) but Hasiotis and Dubiel [66], on the basis of puta-
tive termite nest evidence, hypothesized that they would date back, at least, to the Late Triassic
(~215 Mya). Given both the pivotal role of termites in contemporary warm ecosystems and
their eusocial system, this debate has important consequences on our understanding of insect
evolution.

Apart from Bourguignon et al. and Misof et al. ([26,117]; 136–170 Mya, ~130–145 Mya,
respectively), recent molecular studies reported a much older and wider range for crown-Iso-
ptera than ours (140–480 Mya in [21]; 180–230 Mya in [127]), and, even though Davis et al.
[21] acknowledged that their oldest estimates are artifactual, they do not deny a possible Late
Triassic, or even older, origin for termites. Here, we hypothesized a stem-termite origin in the
Early Jurassic (i.e. ~ 195 Mya) and a crown diversification in the Late Jurassic (~ 150 Mya).
Thus, the Late Triassic termite nest ‘evidence’ (~215 Mya; [66]) is not corroborated by our
analyses, which supports previous criticisms of this fossil interpretation [62,68]. The discovery
of a nest-like structure in Triassic rocks, even if similar to termite nests, could have been built
by other organisms. Furthermore, the age of the embedding rocks could be different from the
age of the nest itself. The fossil Stephanotermopsis rodendorfi [128], a putative stem-termite
that dates back to ~290 Mya but has never been revised since its original description, does not
fit either with our dating estimates or those of Ware et al. [127] or Bourguignon et al. [26]. Ste-
phanotermopsis rodendorfi possesses some Dictyoptera-like attributes (e.g., forewing with ScP
anteriorly pectinate, both RA and RP branched) but it is likely not a stem-Isoptera because it
lacks any of Isoptera synapomorphy (e.g., S. rodendorfi has a long and branched Sc, a branched
RA and a well individualized RP; A. Nel, pers. obs.)

Our dating estimates put into perspective the fact that termites could have been the first
extant insect lineage that has evolved eusociality [129,130]. Given the difficulties associated
with fossil nests, other evidence of sociality should be looked for to refine our understanding
on the origin of eusociality. Among these evidences are sterile castes but fossils of these castes
are rare, and the oldest one dates back to the Early Cretaceous [131]. For reproductive individ-
uals, which are the most abundant in the oldest fossil records, only a phylogenetic position
hypothesis would allow inferring sociality. Vršanský [132] suggested that the presence of a
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basal suture in adult termite wings could also be indicative of eusociality but this morphological
character is rather associated to a life in endogean habitats and not characteristic of eusociality.

Finally, given both the recent origin of termites and their crucial role as decomposers, one
can wonder how warm ecosystems functioned in the Triassic or before (see for example [133]).
Myriapoda, Blattodea and some Orthoptera could also have acted as decomposers, but further
evidence is needed. Thus, it remains an open question and it is worth noticing that similar
questions exist for scavenger and coprophagous guilds, as these guilds are mainly composed of
two recent lineages: Diptera and Coleoptera since the Cenozoic.

Conclusions
We used a conservative approach allowing old age estimates with verified fossils and a large
phylogenetic sample to elucidate the timing of diversification of Dictyoptera and of its three
sub-orders (i.e. Blattodea, Mantodea and Isoptera). We provided age estimates that clarified
the debates around the origin of each crown-dictyopteran group. Cockroaches and praying
mantises appear as ancient lineages as assumed by some early authors, but the real situation is
not so simple. The most ancient presumptive fossils of these groups were not necessarily cor-
rectly attributed and debates are far from over. In contrast, termites appear more recent than
some authors suggested. As a whole, our approach showed that presumptive old ages were not
all confirmed in spite of a conservative root calibration.

This chronological framework has three main evolutionary consequences. First, the pattern
of old origin and much more recent diversification of praying mantises suggests a scenario of
ecological succession in the major carnivorous lineages of polyneopterous insects. Second, the
recent detritivory in termites could have complemented the more ancient detritivory of cock-
roaches. Third, we refine the chronological window during which termites evolved eusociality,
potentially the first insect group to do so.

This new timescale for Dictyoptera provides an opportunity for directing future research
both in molecular phylogenetics and in palaeontology. It would be necessary to investigate fur-
ther the phylogenetic relationships of cockroaches, which seem more obscure than those of
praying mantises and termites, and investigate undersampled families and surprisingly long
branches. Blattidae, Corydiidae and Anaplectinae should be the first target in future phyloge-
netic studies. Also, it would be necessary to search for fossils of each group at some critical peri-
ods shown by the present dating where their occurrence is still disputable: praying mantises in
the Permian and Triassic periods; cockroaches in the Permian; and termites in the Jurassic.
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