K. Ara, The aggregation problem in input-output analysis, Econometrica, vol.27, pp.257-262, 1959.

W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Q. Appl. Math, vol.9, pp.17-29, 1951.

G. Bell, The costs of reproduction and their consequences, Am. Nat, vol.116, issue.1, pp.45-76, 1980.

F. Bienvenu, E. Akçay, S. Legendre, and D. M. Mccandlish, The genealogical decomposition of a matrix population model with applications to the aggregation of stages. Theor, Popul. Biol, vol.115, pp.69-80, 2017.

F. Bienvenu and S. Legendre, A new approach to the generation time in matrix population models, Am. Nat, vol.185, pp.834-843, 2015.

J. J. Boonekamp, M. Salomons, S. Bouwhuis, C. Dijkstra, and S. Verhulst, Reproductive effort accelerates actuarial senescence in wild birds: an experimental study, Ecol. Lett, vol.17, pp.599-605, 2014.

H. Caswell, A general formula for the sensitivity of population growth rate to changes in life history parameters. Theor, Popul. Biol, vol.14, pp.215-230, 1978.

H. Caswell, Matrix Population Models, 2001.

H. Caswell, Sensitivity analysis of transient population dynamics, Ecol. Lett, vol.10, pp.1-15, 2007.

H. Caswell, Perturbation analysis of nonlinear matrix population models, Demogr. Res, vol.18, pp.59-116, 2008.

H. Caswell, Matrix models and sensitivity analysis of populations classified by age and stage: a vec-permutation matrix approach, Theor. Ecol, vol.5, pp.403-417, 2012.

H. Caswell, A matrix approach to the statistics of longevity in heterogeneous frailty models, Demogr. Res, vol.31, pp.553-592, 2014.

H. Caswell and F. A. Kluge, Demography and the statistics of lifetime economic transfers under individual stochasticity, Demogr. Res, vol.32, pp.563-588, 2015.

H. Caswell and R. Salguero-gómez, Age, stage and senescence in plants, J. Ecol, vol.101, pp.585-595, 2013.

H. Caswell and E. Shyu, Sensitivity analysis of periodic matrix population models. Theor, Popul. Biol, vol.82, pp.329-339, 2012.

H. Caswell, T. Takada, and C. M. Hunter, Sensitivity analysis of equilibrium in density-dependent matrix population models, Ecol. Lett, vol.7, pp.380-387, 2004.

H. De-kroon, A. Plaisier, J. Van-groenendael, and H. Caswell, Elasticity: The relative contribution of demographic parameters to population growth rate, Ecology, vol.67, pp.1427-1431, 1986.

L. Demetrius, Demographic parameters and natural selection, Proc. Natl. Acad. Sci, vol.71, pp.4645-4647, 1974.

L. Demetrius, Natural selection and age structured populations, Genetics, vol.79, pp.535-544, 1975.

N. J. Enright, M. Franco, and J. Silvertown, Comparing plant life histories using elasticity analysis: theimportance of life span and the number of life -cycle stages, Oecologia, vol.104, pp.79-84, 1995.

L. Euler, Recherches générales sur la mortalité et la multiplication, Mem. Acad. R. Sci. Belles Lett, vol.16, pp.144-164, 1760.

R. A. Fisher, The Genetical Theory of Natural Selection, Genetics, 1930.

W. D. Fisher, Criteria for aggregation in input-output analysis, Rev. Econ. Stat, vol.40, 1958.

W. D. Fisher, Clustering and Aggregation in Economics, 1969.

J. Giske, D. L. Aksnes, and B. Førland, Variable generation times and Darwinian fitness measures, Evol. Ecol, vol.7, pp.233-239, 1993.

L. A. Goodman, The analysis of population growth when the birth and death rates depend upon several factors, Biometrics, vol.25, pp.659-681, 1969.

L. A. Goodman, On the sensitivity of the intrinsic growth rate to changes in the age-specific birth and death rates. Theor, Popul. Biol, vol.2, pp.90025-90031, 1971.

I. Hanski, Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes, Oikos, vol.87, pp.209-219, 1999.

H. V. Henderson and S. R. Searle, The vec-permutation matrix, the vec operator and kronecker products: a review. Linear Multilinear Algebr, vol.9, pp.271-288, 1981.

D. E. Hooley, Collapsed matrices with (almost) the same eigenstuff, College Math. J, vol.31, 2000.

C. M. Hunter and H. Caswell, The use of the vec-permutation matrix in spatial matrix population models, Ecol. Model, vol.188, pp.15-21, 2005.

Y. Ijiri, The linear aggregation coefficient as the dual of the linear correlation coefficient, Econometrica, vol.36, p.252, 1968.

J. H. Lambert, Beyträge Zum Gebrauche Der Mathematik Und Deren Anwendung, vol.3, 1772.

R. Law, A model for the dynamics of a plant population containing individuals clasified by age and size, 1983.

L. Bras and H. , Equilibre et croissance de populations soumises a des migrations, Theor. Popul. Biol, vol.121, pp.100-121, 1970.

J. D. Lebreton, Demographic models for subdivided populations: the renewal equation approach, Theor. Popul. Biol, vol.49, pp.291-313, 1996.

J. D. Lebreton and L. P. Lefkovitch, Age, stages, and the role of generation time in matrix models, Ecol. Model, vol.188, pp.1-18, 1965.

J. Lemaître, V. Berger, C. Bonenfant, M. Douhard, M. Gamelon et al., Early-late life trade-offs and the evolution of ageing in the wild, Proc. Biol. Sci, vol.282, 2015.

W. Leontief, An alternative to aggregation in input-output analysis and national accounts, Input-Output Economics, pp.41-54, 1986.

P. H. Leslie, On the use of matrices in certain population mathematics, Biometrika, vol.33, pp.183-212, 1945.

E. G. Lewis, On the generation and growth of a population, pp.93-96, 1942.

C. Li and S. Schreiber, On dispersal and population growth for multistate matrix models, Linear Algebra Appl, vol.418, pp.900-912, 2006.

T. Li and J. J. Anderson, The vitality model: A way to understand population survival and demographic heterogeneity. Theor, Popul. Biol, vol.76, pp.118-131, 2009.

Y. Morimoto, On aggregation problems in input-output analysis, Rev. Econ. Stud, vol.37, pp.119-126, 1970.

B. G. Murray, The evolutionary significance of lifetime reproductive success, Auk, vol.109, pp.167-172, 1992.

N. Nur, Fitness, population growth rate and natural selection, Oikos, vol.42, p.413, 1984.

S. Pavard and F. Branger, Effect of maternal and grandmaternal care on population dynamics and human life-history evolution: A matrix projection model. Theor, Popul. Biol, vol.82, pp.364-376, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00697834

F. Plard, C. Bonenfant, D. Delorme, and J. M. Gaillard, Modeling reproductive trajectories of roe deer females: Fixed or dynamic heterogeneity? Theor, Popul. Biol, vol.82, pp.317-328, 2012.

A. Rogers, The multiregional matrix growth operator and the stable interregional age structure, Demography, vol.3, pp.537-544, 1966.

A. Rogers, On perfect aggregation in the matrix-survival model of interregional population growth, J. Reg. Sci, vol.9, pp.417-424, 1969.

A. Rogers, The multiregional net maternity function and multiregional stable growth, Demography, vol.11, pp.473-481, 1974.

A. Rogers, Introduction to multistate mathematical demography, Environ. Plan. A, vol.12, pp.489-498, 1980.

G. Roth and H. Caswell, Hyperstate matrix models: extending demographic state spaces to higher dimensions, Methods Ecol. Evol, 2016.

R. Salguero-gómez and J. B. Plotkin, Matrix dimensions bias demographic inferences: implications for comparative plant demography, Am. Nat, vol.176, pp.710-722, 2010.

F. R. Sharpe and A. J. Lotka, A problem in age distribution, Phil. Mag, vol.21, pp.435-438, 1911.

H. A. Simon and A. Ando, Aggregation of variables in dynamic systems, Econometrica, vol.29, pp.111-138, 1961.

U. K. Steiner, S. Tuljapurkar, and T. Coulson, Generation time, net reproductive rate, and growth in stage-age-structured populations, Am. Nat, vol.183, pp.771-783, 2014.

I. Stott, S. Townley, and D. J. Hodgson, A framework for studying transient dynamics of population projection matrix models, Ecol. Lett, vol.14, pp.959-970, 2011.

S. D. Tuljapurkar, Why use population entropy? it determines the rate of convergence, J. Math. Biol, vol.13, pp.325-337, 1982.

S. Tuljapurkar, Population dynamics in variable environments, VI. Cyclical environments. Theor. Popul. Biol, vol.28, issue.85, p.90019, 1985.

S. Tuljapurkar, Demography in stochastic environments II. Growth and convergence rates, J. Math. Biol, vol.24, pp.569-581, 1986.

S. Tuljapurkar, Demography in stochastic environments I. Exact distributions of age structure, J. Math. Biol, vol.19, pp.335-350, 1986.

S. Tuljapurkar, Entropy and convergence in dynamics and demography, J. Math. Biol, vol.31, pp.253-271, 1993.

S. Tuljapurkar and S. H. Orzack, Population dynamics in variable environments I. Long-run growth rates and extinction. Theor, Popul. Biol, vol.18, pp.314-342, 1980.

S. Tuljapurkar and U. K. Steiner, Dynamic heterogeneity and life histories, Ann. New York Acad. Sci, vol.1204, pp.65-72, 2010.

M. B. Usher, A matrix model for forest management, Biometrics, vol.25, pp.309-315, 1969.

J. W. Vaupel, K. G. Manton, and E. Stallard, The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, vol.16, pp.439-454, 1979.

E. Van-imhoff, A general characterization of consistency algorithms in multidimensional demographic projection models, Popul. Stud. (NY), vol.46, pp.159-169, 1992.

A. J. Van-noordwijk, J. De, and G. , Acquisition and allocation of resources: their influence on variation in life history tactics, Am. Nat, vol.128, issue.1, pp.137-142, 1986.

Y. Vindenes, Stochastic modeling of finite populations with individual heterogeneity in vital parameters, 2010.

F. J. Willekens, Sensitivity analysis in multiregional demographic models, Environ. Plan. A, vol.9, pp.653-674, 1977.

R. Yuster and U. Zwick, Fast sparse matrix multiplication, ACM Trans. Algorithms, vol.1, pp.2-13, 2005.