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Abstract

There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR)
and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK
receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the
functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2)
rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to
such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I
ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-
polymorphic KLR in ‘‘higher’’ primates. Our data support the existence of a hitherto unknown system of polymorphic and
diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor
repertoire.
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Introduction

Natural killer (NK) cells are bone marrow-derived lymphocytes

that form an essential part of the immune response against

pathogens and are involved in the elimination of tumour cells.

Equipped with a diverse array of germline-encoded receptors that

are able to mediate inhibitory or activating signals [1], NK cells

scan other cells for the presence of ligands of these receptors [2].

Activation of NK cells is typically achieved by discontinuation of

inhibitory signalling and involvement of activating receptors,

resulting in cytokine release or killing of target cells [2–4]. Most

NK cell receptors interact with members of the MHC class I

protein family and either belong to the killer cell lectin-like

receptors (KLR) of the C-type lectin-like family such as CD94,

NKG2, or Ly49, or the killer cell immunoglobulin-like (KIR)

receptors, which are encoded in the natural killer complex (NKC)

and leukocyte receptor complex (LRC), respectively [1]. Both NKC

and LRC contain inhibitory and activating NK cell receptors.

Inhibitory receptors are characterised by the presence of

immunoreceptor tyrosine-based inhibitory motifs (ITIM) in the

cytoplasmic tail, whereas activating receptors lack ITIMs and

instead contain a positively charged amino acid (arginine or lysine)

in their transmembrane region, thereby associating with signalling

adaptor molecules DAP10, DAP12 or FccR [2].

The polymorphic NK cell receptors are represented by KIR in

humans, apes, Old World and New World monkeys [5–7] and

KLR (Ly49 molecules) in rodents [8]. These two receptor systems

are not structurally related, but have similar functions: interaction

with MHC class I molecules and regulation of NK cell activity [2].

Due to these functional constraints, KIR and Ly49 genes have to

keep pace with the rapidly evolving and polymorphic class I genes

[9] and it has been shown that combinations of this highly

complex and polymorphic genetic system of NK cell receptors and

their MHC class I ligands can significantly influence susceptibility
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and resistance to infectious and malignant diseases, autoimmune

disorders, and reproduction [10]. In contrast to KIR and Ly49,

another genetic system of MHC class I-binding NK cell receptors

has been kept conserved in primates (hominoids, Old World and

New World monkeys) [11] and rodents [12], the CD94 and

NKG2 molecules, which also belong to the KLR family. The

CD94 molecule can either pair with the inhibitory NKG2A or the

activating NKG2C and NKG2E molecules and these heterodi-

meric NK cell receptors specifically recognise conserved nonclas-

sical class I molecules, HLA-E in humans [13] and H2-Qa1 in

mice [14]. These nonclassical class I molecules bind peptides

derived from signal sequences of certain class I molecules [15],

thereby monitoring putative downregulation of the corresponding

class I molecules mediated by pathogens as part of their immune

evasion strategy.

Various NK cell receptors (CD94/NKG2, KIR, Ly49L) have

been identified in different nonhuman primates, and rapid

evolution in particular of the KIR genes was reported [16]. Yet,

two questions remain open: how far can we trace back KIR3DL

diversification and what was the NK cell receptor content in the

ancestor of all primates? We report here that strepsirrhine

primates such as lemurs have evolved a ‘third way’ of a diverse

NK cell receptor system and exhibit highly diversified, positively

selected CD94/NKG2 receptors. This NK cell receptor system is

further characterised by combinatorial diversity.

Results

In the absence of a formal taxonomic designation, we refer to

strepsirrhines (lemurs, galagos, lorises) and tarsier as ‘lower’

primates and to humans, apes, Old and New World monkeys as

‘higher’ primates throughout the manuscript.

Unusual organisation of the LRC, NKC, and MHC in
‘‘lower’’ primates

Clones containing the LRC, NKC, and MHC genomic regions

were isolated from a BAC library of the grey mouse lemur

(Microcebus murinus). Nineteen BAC clones from the LRC region

were identified and three clones covering the KIR-LILR subregion

were sequenced: one clone contains the NCR1, FCAR, and LILR

genes in addition to a KIR3DP pseudogene mapping between

FCAR and the LILR gene cluster, and the other two clones both

include LILR genes and a single copy of the KIR3DX1 [17] gene

(Figure 1A). Similar to all other primate KIR3DX1 genes, the two

lemur copies, of which only one is intact, also lack the MLTD1

repetitive elements in intron 3. The intact copy is transcribed in

lemur PBMC and alternatively spliced (Figure S1); the other locus

(KIR3DX1P) is a fragmented pseudogene. In contrast, KIR3DP is

characterised by the presence of KIR3DL-typical repetitive

elements such as MLT1D/LTR33A, MSTB1, MER70B [7] and is

thus the only representative of the KIR3DL lineage in the grey

mouse lemur. The repetitive elements flanking KIR3DP are found

in the ‘outer’ human KIR genes KIR3DL3 and KIR3DL2 (data not

shown), suggesting that the lemur KIR3DP is equivalent to all

‘higher’ primate KIR genes. Thus, the only functional KIR in the

mouse lemur genome is represented by KIR3DX1, a KIR gene of

unknown function [17].

Unlike the KIR region, the CD94-Ly49L genomic interval of the

grey mouse lemur NKC showed amplifications of the CD94 and

NKG2 genes (Figure 1B), which accounted for its 1.5 times

increased size compared to humans. Only two genes in this region

represent one-to-one orthologs of ‘higher’ primate genes: NKG2D

and Ly49L. Further investigations of the three mouse lemur CD94

genes indicate they encode typical CD94 receptor structures but

their amino acid sequences show considerable diversity, differing

by 23–24% among each other (Figure S2). Such level of

divergence is significantly higher than in ‘higher’ primates, as

human and common marmoset monkey CD94 sequences differ

only by 13% for example [11]. Furthermore, eight NKG2-related

genes were identified (Figure 1B), of which five are functional

genes (Figure S3) and three are pseudogenes. The NKG2

molecules show different combinations of functionally relevant

motifs: ITIM, positively charged residue in the transmembrane

region, and the YxxM motif, which is a recognition site for the p85

subunit of phosphatidylinositol 3-kinase (PI3K). Allelic substitu-

tions affect the presence of ITIM and YxxM motifs in NKG2-2 and

NKG2-3 (Figure S3). These findings suggest that the mouse lemur

NKG2 receptors are functionally complex, with inhibitory and

activating properties.

BAC clones from the MHC class I and class II regions could be

mapped to the short arm of mouse lemur chromosome 6 by

fluorescence in-situ hybridisation (FISH) (Figure 2). Whereas the

class II region is conserved (Averdam et al., manuscript in

preparation), the linked class I gene-containing regions of the

mouse lemur MHC lack any functional class I genes as the four

identified class I genes and the single MIC gene all represent

pseudogenes (Figure 1C). Remarkably, even MHC-E and MHC-F,

the only two conserved MHC class I genes of ‘higher’ primates, are

missing in the mouse lemur MHC. Interestingly, our screening of

the mouse lemur BAC library for MHC class I genes also identified

an unlinked genomic region that includes nine MHC class I genes.

Complete sequencing of this region revealed six genes encoding

functional MHC class I proteins, including putative alleles of the

previously described classical class I genes of the mouse lemur,

Mimu-W01 and Mimu-W04 [18] (Figure 1C). This class I gene

cluster maps to another chromosome, the long arm of mouse

lemur chromosome 26 (Figure 2), thus providing an additional

example of a mammalian species where MHC class I and class II

genes are not linked. A similar chromosomal splitting of class I

genes was found for a further lemur species, Coquerel’s giant

mouse lemur (Mirza coquereli) (Figure 2). The CD94 and NKG2

genes could be mapped to chromosome 7 in the giant mouse

Author Summary

Most receptors of natural killer (NK) cells interact with
highly polymorphic major histocompatibility complex
(MHC) class I molecules and thereby regulate the activity
of NK cells against infected or malignant target cells.
Whereas humans, apes, and Old and New World monkeys
use the family of killer cell immunoglobulin-like receptors
(KIR) as highly diverse NK cell receptors, this function is
performed in rodents by the diverse family of lectin-like
receptors Ly49. When did this functional separation occur
in evolution? We followed this by investigating lemurs,
primates that are distantly related to humans. We show
here that lemurs employ the CD94/NKG2 family as their
highly diversified NK cell receptors. The CD94/NKG2
receptors also belong to the lectin-like receptor family,
but are rather conserved in ‘‘higher’’ primates and rodents.
We could further demonstrate that lemurs have a single
Ly49 gene like other primates but lack functional KIR genes
of the KIR3DL lineage and show major deviations in their
MHC class I genomic organisation. Thus, lemurs have
evolved a ‘‘third way’’ of polymorphic and diverse NK cell
receptors. In addition, the multiplied lemur CD94/NKG2
receptors can be freely combined, thereby forming diverse
receptors. This is, therefore, the first description of some
combinatorial diversity of NK cell receptors.

Novel NK Cell Receptor System

PLoS Genetics | www.plosgenetics.org 2 October 2009 | Volume 5 | Issue 10 | e1000688



Figure 1. Comparison of human and grey mouse lemur LRC, NKC, and MHC genomic regions. Y denotes pseudogene (criteria based on:
premature stop codons, frameshift deletions/insertions, absence of essential coding/non-coding parts). (A) Sequenced BAC clones (GenBank
accession no. CR974412, CR974436, CR974413) of the LRC. Open rectangles denote KIR genes, filled rectangles all other genes. Arrows point to
corresponding KIR genes. No gene designations are shown for human KIR haplotypes. (B) Sequenced BAC clone contig of the NKC that constitute a
complete haplotype. Open rectangles denote NKG2 genes, grey rectangles CD94 genes, and filled rectangles all other genes. The order of BAC clones
in this CD94 to Ly49L genomic interval is: 50I2, 96C7, 146L20, and 1E15 (haplotype 1: GenBank accession no. FP236838). A second contig of BAC
clones includes the CD94-1-NKG2-8 interval represented by clones 481C2, 492D19, 489H5, and 222F7 (not shown) and constitutes a second
haplotype (GenBank accession no. FP236834). (C) Sequenced BAC clones (GenBank accession no. AB480748, FP236831, FP236832, FP236833,
FP236839) of the MHC class I gene regions. Class I genes of BAC clone CH257-465D12 that could not be assigned to an already known gene or allele,
are named according to their position on the BAC clone (numbers in parentheses). Putative alleles Mimu-W01 and Mimu-W04 are indicated. Open
rectangles denote MHC class I genes, grey rectangles MHC class II genes, and filled rectangles all other genes.
doi:10.1371/journal.pgen.1000688.g001

Novel NK Cell Receptor System

PLoS Genetics | www.plosgenetics.org 3 October 2009 | Volume 5 | Issue 10 | e1000688



Figure 2. Chromosomal localisation of lemur MHC and NK cell receptor genes. FISH using mouse lemur BACs containing MHC class I and
class II genes reveals a split of class I genes to chromosome 6 (GNL, TRIM39, TRIM26, ZNRD1, MOG, BAT1, MIC, POU5F1) and to chromosome 26
(ANKRD11, Mimu-W01, Mimu-W04) of Microcebus murinus. Nomenclature of M.murinus and M.coquereli chromosomes are according to Ref. [43] The
same split is shown for Mirza coquereli: ZNRD1 and MOG hybridise to chromosome 6 and ANKRD11, Mimu-W01, and Mimu-W04 to chromosome 26.
All tested MHC class II region genes (TAP2, DQ, DR, BTNL2) map to chromosome 6 in Microcebus murinus and Mirza coquereli, respectively. Note that
in both species secondary signals appear scattered along the X chromosome. In Mirza coquereli, KIR-including BAC CD257-37C10 hybridises to a
small acrocentric chromosome not identical with chromosome 26 and to the X chromosome, and NKG2-including BAC CH257-96C7 maps to
chromosome 7, which is orthologous to human chromosome 12. Note that further signals appear on the chromosome X.
doi:10.1371/journal.pgen.1000688.g002

Novel NK Cell Receptor System
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lemur, which corresponds to human chromosome 12, indicating

conserved synteny of the NKC region. The KIR3DX1P gene-

containing BAC was mapped to a small acrocentric chromosome

not identical with chromosome 26 (Figure 2).

Evolution of CD94/NKG2 and MHC class I genes in ‘‘lower’’
and ‘‘higher’’ primates

Using the mouse lemur NKC sequences as reference we

investigated corresponding cDNA sequences from the black-and-

white ruffed lemur (Varecia variegata), a species that diverged from

the grey mouse lemur about 43 million years ago (mya) [19]. A

single NKG2D, five CD94, nine NKG2 and two Ly49L cDNA

sequences were isolated from ruffed lemur PBMC by RT-PCR

cloning. The deduced amino acid sequences exhibit similar

functional features as described above for mouse lemur CD94

and NKG2 molecules (Figure S2, Figure S3). Two pairs of CD94

sequences (CD94-2*01, CD94-2*02, and CD94-3*01, CD94-3*02)

only differ by a few nucleotide substitutions and are, therefore,

regarded as alleles. Similarly, two allelic NKG2 (NKG2-6*01,

NKG2-6*02) and two allelic Ly49L (Ly49L*01, Ly49L*02) sequences

were isolated, so that the ruffed lemur NKC is estimated to possess

three CD94, eight NKG2 genes and single NKG2D and Ly49L genes.

Phylogenetic analyses of primate CD94 and NKG2 sequences

encoding the C-type lectin-like domain indicate that for both gene

families ‘lower’ and ‘higher’ primate sequences form their own

groups, indicating that diversification of CD94 and NKG2 occurred

in ‘lower’ primates after their separation with ‘higher’ primates

(Figures 3A and 3B). ‘Lower’ primate NKG2 sequences form three

groups, each with sequences from both lemurs, pointing to

duplications that preceded speciation of both lemurs (Figure 3B).

Similarly, in the largest of the three ‘lower’ primate NKG2 groups,

some gene sequences show species-specific clustering indicating

gene duplications following speciation of both lemurs. Such

patterns demonstrate that NKG2 gene duplications in ‘lower’

primates occurred both before and after the separation of the two

lemur species, a process similar to that seen for KIR in ‘higher’

primates and Ly49 in rodents [20]. In contrast to the C-type lectin-

like domain, NKG2 sequences encoding the stem, cytoplasmic, and

transmembrane part fall into two branches: one contains ‘lower’

and ‘higher’ primate inhibitory NKG2, the other one containing

‘lower’ and ‘higher’ primate activating NKG2, indicating that these

two types of sequences separated before the speciation between

‘higher’ and ‘lower’ primates (Figure 3C).

To determine whether amplification of CD94 genes is restricted

to strepsirrhine primates living in Madagascar (lemurs) or is

common to other ‘lower’ primates, we investigated the CD94

sequences of an African and an Asian primate, the potto

(Perodicticus potto) and the tarsier (Tarsius syrichta). Whereas the

potto belongs to the primate suborder Strepsirrhini, the tarsier is a

member of the other primate suborder, the Haplorrhini (tarsiers,

New and Old World monkeys, apes and human). Using all

available primate sequences as reference, generic primers were

constructed to amplify the region including exon 4, intron 4 and

exon 5 of CD94 and we characterised seven and nine different

CD94 sequences in potto and tarsier, respectively (Figure S4).

These findings thus indicate that CD94 gene amplification is not

restricted to lemurs, but can be found in other strepsirrhine

primates and even in a primate more closely related to humans

than to lemurs [21]. Insertions of repetitive elements of the Alu

family in intron 4 revealed additional information: whereas none

of the three mouse lemur CD94 genes contains any Alu element,

four of the seven potto sequences include an AluJo and all nine

tarsier sequences have an AluJb element (Figure S4). However, the

integration sites of these Alu elements differ between potto and

tarsier, indicating that integration events occurred after these

lineages diverged from each other. Hence, the amplification of

CD94 sequences occurred repeatedly and independently in ‘lower’

primates. The intron 4 sequences of human, rhesus macaque and

common marmoset CD94 share an AluSx integration (data not

shown), which is not present in ‘lower’ primates, further

supporting the monophyletic origin of ‘higher’ primate CD94.

While lemurs (and possibly other ‘lower’ primates) experienced

a diversification of the CD94/NKG2 receptor system, they appear

to lack MHC-E, the ligand of CD94/NKG2 in ‘higher’ primates,

as their MHC region lacks a class I gene where the MHC-E gene of

‘higher’ primates is located (Figure 1C). To investigate if any of the

grey mouse lemur MHC class I genes represents an ortholog or

functional equivalent of ‘higher’ primate MHC-E, we performed

phylogenetic analyses of primate MHC class I sequences. Analyses

of the full-length sequences and of the peptide-binding-domain

(PBD) alone, with or without the peptide binding residues (PBR)

indicate that ‘lower’ and ‘higher’ primate sequences form their

own groups (Figure 4A–4C, Figure S5). This demonstrates that

MHC class I diversification in ‘lower’ and ‘higher’ primates took

place in each taxonomic lineage after their separation and further

indicates that the duplication that gave rise to the MHC class I

genes on chromosome 26q occurred in the ‘lower’ primate lineage.

Similarly, analysis of the PBR revealed that the ‘higher’ primate

MHC-E sequences are more closely related to the rodent Qa1

group than to any of the ‘lower’ primate sequences (Figure 4D).

Thus, these findings indicate that the grey mouse lemur genome

neither encodes a strict orthologue (with a one-to-one relationship)

nor a functional homologue of MHC-E and confirm earlier data of

our group that ‘higher’ and ‘lower’ primate MHC class I genes lack

strict orthology [18].

NKC-encoded genes of ‘‘lower’’ primates are genetically
and functionally diverse

Our genomic analysis in one mouse lemur individual and cDNA

sequencing in three individuals (two mouse lemurs and one black-

and-white ruffed lemur) revealed that ‘lower’ primates experienced

a diversification of both CD94 and NKG2. Such diversification is in

contrast with the situation in ‘higher’ primates where CD94 is a

non-polymorphic, single-copy gene and where the NKG2 gene

family experienced limited diversification with moderate polymor-

phism. To investigate if such difference is the result of natural

selection favouring functional diversity in ‘lower’ but not in

‘higher’ primates, we compared the non-synonymous to synony-

mous substitution ratio rate (dN/dS) of CD94 and NKG2 sequences

of ‘lower’ and ‘higher’ primates (Table 1). This analysis shows that

‘lower’ primate CD94 sequences display highly significant evidence

of positive diversifying selection (a= 0.001) with 15 positions

positively selected (posterior probability (PP).0.95). In contrast,

their ‘higher’ primate counterparts do not show any evidence of

positive selection (Table 1). A similar, yet not as marked, trend is

seen for NKG2 as ‘lower’ primate sequences show highly significant

evidence of positive diversifying selection (a= 0.001), with six

positions being positively selected (PP.0.95) while in ‘higher’

primates the evidence was not as strong (a= 0.01–0.05) and

limited to only one site (Table 1). Mapping of the 21 positively

selected sites in ‘lower’ primates on the three-dimensional model of

the human CD94/NKG2A heterodimer in contact with HLA-E

[22,23] suggests that many of these positions represent functionally

relevant sites (Figure 5A). Indeed, closer inspection revealed that

the distribution of these 21 positively selected sites in the CD94/

NKG2 lectin-like domains shows a significant bias (a= 0.05) toward

the 54 sites involved in ligand-binding and/or dimer formation

(Table 2, Figure S6). Further dissection of this bias shows it is

Novel NK Cell Receptor System
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particularly marked for the 28 ligand-binding sites (a= 0.01), but

not for the 30 sites involved in dimer formation. Within the ligand-

binding sites a significant bias toward the 7 sites contacting the

MHC class I peptide (a= 0.003) was observed, but for the sites

contacting the MHC-class I heavy chain the bias was marginal

(a,0.06) (Table 2, Figure S6). Consistent with this, the four

CD94/NKG2 positively selected positions that contact the MHC

class I peptide account for 75% (9 out of 12) of all the contacts with

the peptide (Figure 5B). This analysis thus shows that the genomic

diversification of CD94/NKG2 in ‘lower’ primates was accompa-

nied by positive diversifying selection that particularly targeted the

sites contacting the MHC class I peptide. In ‘higher’ primates the

limited (NKG2) or lack of (CD94) genomic diversification was

accompanied by limited (NKG2) or lack of (CD94) sequence

diversification through positive diversifying selection.

To fully investigate the extent of allelic diversity of ‘lower’ primate

NKC genes we specifically amplified the exons encoding the lectin-

like domain of mouse lemur CD94, NKG2, and Ly49L genes in a

cohort of 46 free-living unrelated animals derived from the Kirindy

region in Madagascar [24]. Twelve animals were analysed for all

Figure 3. Major diversification of CD94 and NKG2 occurred in ‘‘lower’’ primates after their separation with ‘‘higher’’ primates.
Phylogenetic analyses of primate CD94 (A) and NKG2 (B) C-type lectin-like domain sequences and NKG2 stalk, transmembrane, cytoplasmic regions (C).
The tree topology obtained with the Neighbor-Joining (NJ) analysis was used for the display (with a midpoint rooting) and numbers at nodes indicate
support obtained for Bayesian, parsimony, and NJ methods (from top to bottom). Support is shown if Bayesian posterior probability (PP) $ 88% and
other methods bootstrap proportion (BP) $ 50% (at least 2 methods). Filled circles at nodes indicate PP . 95% and BP $ 80%. *: BP , 50 or PP , 80.
Mimu, Microcebus murinus; Vava, Varecia variegata. A maximum-likelihood analysis was also performed, and the maximum-likelihood bootstrap support
is indicated in parenthesis for two nodes.
doi:10.1371/journal.pgen.1000688.g003

Novel NK Cell Receptor System
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Figure 4. ‘‘Lower’’ primates lack a strict ortholog or functional equivalent of ‘‘higher’’ primate MHC-E. Phylogenetic analyses of MHC
class I genes with complete coding sequences (A), peptide binding domain (B), peptide binding domain excluding peptide binding residues (C) and
peptide binding residues only (D). A phylogenetic analysis of MHC class I genes with complete coding sequences excluding the peptide binding
residues was also conducted and the results are presented in Figure S5. Analysis and display are as described for Figure 3. Numbers as gene names
for MHC class I are the same as in Figure 1C. Non-primate sequences included are mouse (H2) and rat (RT1). Peptide binding residues were defined
according to Bjorkman et al. [44]. Patr, Pan troglodytes; Gogo, Gorilla gorilla; Hyla, Hylobates lar; Saoe, Saguinus oedipus; Sasc, Saimiri sciureus; Mamu,
Macaca mulatta; Mimu, Microcebus murinus; Aotr, Aotus trivirgatus; Caja, Callithrix jacchus; Pipi, Pithecia pithecia.
doi:10.1371/journal.pgen.1000688.g004

Novel NK Cell Receptor System
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genes and further 34 animals were additionally analysed for the

three CD94 genes. No presence/absence polymorphisms of grey

mouse lemur CD94 or NKG2 genes were observed in our cohort,

indicating that copy number variation similar to what is known for

human KIR and mouse/rat Ly49 haplotypes is not evident in grey

mouse lemur CD94/NKG2 haplotypes. Single nucleotide polymor-

phisms (SNPs) were detected for all genes and with the exception of

CD94-3 and NKG2D, all the NKC genes show an excess of non-

synonymous substitutions (Table S1). While 30% (71/236) of all the

codons forming the lectin-like domains of CD94 and NKG2 have

non-synonymous allelic polymorphisms in at least one of the ‘lower’

primate CD94 or NKG2 genes, 66% (47/71) of these codons are

neither sites involved in ligand binding or dimer formation nor

positions we detected as positively selected in our gene analysis.

Figure 5. Natural selection diversified ‘‘lower’’ primate CD94 and NKG2 sequences and particularly targeted the residues
interacting with the peptide presented by MHC class I ligands. (A) Positively selected sites of ‘lower’ primates CD94/NKG2 superimposed on
the three-dimensional structure of the human CD94/NKG2A/HLA-E complex [22,23]. The PDB file 3cdg was used and represented with PyMOL [45]. (B)
Top panel: CD94/NKG2 residues known to interact with MHC class I-bound peptide (based on human CD94/NKG2A/HLA-E). Positively selected
residues in ‘lower’ primates are shown in red. Peptide positions are indicated. Residue in italics indicates allelic substitutions were found at this site.
Bottom panel: ribbon diagram focused on the region where the interaction between CD94-NKG2A and HLA-E occurs; side chains are displayed.
doi:10.1371/journal.pgen.1000688.g005

Table 1. Natural selection diversified CD94 and NKG2 residues in ‘‘lower’’ primates, but not in ‘‘higher’’ primates.

Comparison 2Dl a
Proportion of
selected sites

dN/dS for
selected sites Positively selected sites (M8 p.0.95)

CD94 ‘Lower’ primates M1a vs. M2a 37.66 0.001 0.26 5.51

M8a vs. M8 37.66 0.001 0.26 5.46 90, 106, 109, 110, 112, 113, 123, 129, 135, 136,
138, 156, 159, 176, 177

M7 vs. M8 37.74 0.001 0.26 5.46 (same as M8a vs. M8)

‘Higher’ primates M1a vs. M2a 2.29 NS ** ** **

M8a vs. M8 2.29 NS ** ** **

M7 vs. M8 3.05 NS ** ** **

NKG2 ‘Lower’ primates M1a vs. M2a 16.98 0.001 0.15 2.72

M8a vs. M8 17.45 0.001 0.19 2.50 137, 145, 150, 171, 214, 224

M7 vs. M8 24.73 0.001 0.19 2.50 (same as M8a vs. M8)

‘Higher’ primates M1a vs. M2a 7.81 0.05 0.07 3.18

M8a vs. M8 7.43 0.01 0.14 2.52 168

M7 vs. M8 10.02 0.01 0.14 2.52 (same as M8a vs. M8)

Maximum likelihood estimation of dN/dS ratios and detection of positively selected positions for the NKG2 and CD94 lectin-like domain sequences of ‘higher’ and
‘lower’ primates. The results of the likelihood ratio tests (see methods) are indicated on the left side of the panel and the positions detected as positively selected (with
model M8) are listed on the right side of the panel (p.0.95; p.0.99 shown in bold). a, error level to reject the null model that does not allow for positive selection. NS,
not significant. **, Bayesian analysis was not performed when the likelihood ratio tests were not significant. Residues in italics denote allelic substitutions were found at
this site. Amino acid positions and numbering refer to human CD94 and NKG2A sequences and equivalent positions in aligned non-human primate sequences.
doi:10.1371/journal.pgen.1000688.t001
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Because the differences between the genes largely overshadowed

allelic differences in our analysis for positive selection, such an

observation suggests that following gene duplication natural

selection first diversified functional sites and subsequently favoured

in each species polymorphisms at sites often not directly involved in

function, presumably to further ‘tweak’ functions.

Unlike the ligand binding sites, the positions involved in dimer

formation are not significantly enriched in positively selected sites

(Table 2, Figure S6). Because of this apparent lack of major

diversification of the dimer formation function, we hypothesised

that the three CD94 and five NKG2 molecules of the grey mouse

lemur can be freely combined to form various CD94/NKG2

heterodimers. To test this hypothesis, we checked all possible

combinations with (extracellular) V5-tagged NKG2 and (intracel-

lular) GFP-tagged CD94 molecules. Expression constructs were

transiently transfected into 293T cells and CD94/NKG2

heterodimer formation was assayed by co-immunoprecipitation

using tag-specific monoclonal antibodies. Heterodimers were

found for all CD94/NKG2 combinations by co-immunoprecip-

itation (Figure 6). Cell surface expression of all CD94/NKG2

receptor combinations was examined with (both extracellular)

FLAG- and V5-tagged CD94 and NKG2 molecules, respectively.

All combinations of NKG2-1, NKG2-3, and NKG2-8 with the

three CD94 molecules were found on the cell surface (Figure 7A).

In contrast, cell surface expression of both NKG2-2 and NKG2-5

receptors in combination with CD94 molecules was either low

(CD94-1/NKG2-5) or lacking (Figure 7A), suggesting that these

receptors depend on the DAP12 adaptor molecule. An expression

construct of mouse lemur DAP12 with a c-myc-tag was established

and expression was controlled in parallel experiments by

intracellular staining (data not shown). Co-transfection with c-

myc-tagged mouse lemur DAP12 significantly increased cell

surface expression of all combinations formed by CD94/NKG2-

2 and CD94/NKG2-5 heterodimers (Figure 7B). This finding

identifies NKG2-2 and NKG2-5 as classical activating receptors

whose cell surface expression is dependent on interaction with

DAP12. CD94 and NKG2 expression constructs were also

transfected in 293T cells alone. Similar to human CD94, all three

Table 2. Natural selection targeted the CD94/NKG2 residues
interacting with the peptide presented by MHC class I ligands
in ‘‘lower’’ primates.

All
Ligand
binding Dimer Peptide MHC

Total Selected Sites 21 21 21 21 21

Selected Sites in Category 9 7 4 4 5

Total Residues (CD94+NKG2) 239 239 239 239 239

Residues in Category 54 28 30 7 25

exact p 0.021 0.006 0.152 0.003 0.044

cumulative p 0.031 0.008 0.266 0.003 0.061

p ‘‘distribution by chance’’ ,0.05 ,0.01 NS ,0.01 ,0.06

Binomial test to investigate whether positively selected residues are randomly
distributed or are clustered at functionally relevant sites of the molecules.
Several CD94/NKG2 functional categories were considered based on the human
CD94/NKG2A crystal structure [22,23]: residues contacting the peptide
presented by the MHC ligand form the ‘Peptide’ category while those
contacting the MHC class I heavy chain form the ‘MHC’ category; residues
mediating heterodimer formation represent the ‘Dimer’ category. Additionally,
Peptide and MHC contacts (‘Ligand binding’) and all known contact residues
(‘All’) are summarised. Details on the residues in each category are in Figure S6.
doi:10.1371/journal.pgen.1000688.t002

Figure 6. Co-immunoprecipitation of various combinations of
grey mouse lemur CD94 and NKG2 expression constructs. CD94
constructs fused at the NH2 terminus with GFP and NKG2 molecules
tagged at the COOH terminus with the V5 tag were transiently
transfected into 293T cells. Analyses were performed 24h upon
transfection. Representatives of at least three independent experiments
are shown. Differential degree of glycosylation gives rise to multiple
bands. In the lower panel deglycosylation with PNGase F is
demonstrated exemplarily for inhibitory receptor NKG2-3.
doi:10.1371/journal.pgen.1000688.g006
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Figure 7. COOH terminally tagged NKG2 (V5 tag) and CD94 (FLAG tag) molecules were transiently transfected into 293T cells. Analyses
were performed 24 h upon transfection. Representatives of at least three independent experiments are shown. Numbers indicate the percentage of cells
in each quadrant. Cells in the upper right quadrant show V5- and FLAG-double-positive cells. (A) CD94 and NKG2 cell surface expression without co-
expression of DAP12. (B) Enhancement of NKG2-2 and NKG2-5 expression at the cell surface by co-expression of myc-tagged DAP12.
doi:10.1371/journal.pgen.1000688.g007
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mouse lemur CD94 proteins can be found at the cell surface in the

absence of any NKG2 molecule, but unlike human NKG2

molecules, also mouse lemur NKG2-2 (with DAP12) and NKG2-

3, and to a lower extent NKG2-5 (with DAP12) and NKG2-8, are

expressed at the cell surface in the absence of CD94 (Figure 7A

and 7B).

Taken together, our data show that three CD94 molecules can

be combined with five NKG2 molecules to form 15 different NK

cell receptors that display significant diversity at sites of interaction

with MHC class I ligands and their bound peptide. This indicates

that besides gene amplification and positive diversifying selection

combinatorial diversity is also a mechanism that significantly

contributes to the increase of NK cell receptor diversity in ‘lower’

primates.

Discussion

The polymorphic NK cell receptors of humans and mice are

functionally similar but structurally unrelated. Therefore, we

traced back NK cell receptors and MHC class I ligands to the base

of the primate evolutionary tree by analysis of the LRC, NKC, and

MHC genomic regions in primates distantly related to humans. We

demonstrate that ‘lower’ primates deviate from ‘higher’ primates

in the usage of polymorphic NK cell receptors. Except for the

KIR3DX1 gene, lemurs and possibly other ‘lower’ primates have

neither functional nor highly polymorphic KIR genes like their

relatives, the catarrhine (Old World monkeys, apes, and humans)

and platyrrhine (New World monkeys) primates, nor do they show

an expansion of Ly49 genes as in rodents. Instead, lemurs have

considerably amplified and diversified their C-type lectin-like

CD94 and NKG2 genes. We conclude from our findings that the

NK cell receptor repertoire of ‘lower’ primates is at least as diverse

as in ‘higher’ primates or rodents. Thus, in addition to the KIR and

Ly49 genes of ‘higher’ primates and rodents, the CD94/NKG2

heterodimers of lemurs represent a third system of polymorphic

and diverse NK cell receptors. Compatible with such a system is

that the duplicated lemur CD94 and NKG2 genes show sequence

diversifications and strong signs of positive diversifying selection.

In accordance with these characteristics, lemur NKG2 genes do not

show signs of gene homogenisation as opposed to ‘higher’ primate

NKG2 sequences [11]. Such homogenisation may serve to keep

NKG2 amino acid sequences conserved for interaction with the

invariable MHC-E ligand, a situation that is not observed for the

polymorphic CD94/NKG2 receptors in ‘lower’ primates.

CD94 gene duplications are not restricted to ‘lower’ primates

from Madagascar as they were found in an African strepsirrhine

primate (Perodicticus potto) and in the Asian tarsier (Tarsius syrichta).

The latter is particularly interesting, as the tarsier is more closely

related to ‘higher’ primates than to ‘lower’ primates [21]. Analysis

of repetitive elements in CD94 intron 4 sequences revealed that

duplications had occurred repeatedly and independently in ‘lower’

primates. Thus, the polymorphic CD94/NKG2 system is likely

present in many if not all ‘lower’ primates. This is in sharp contrast

to the situation in ‘higher’ primates where CD94 is a single copy,

non-polymorphic and highly conserved gene.

Three KIR genes were detected in the lemur LRC region, a

functional and a pseudogene copy of KIR3DX1 and a KIR3DP

pseudogene. According to its characteristics, the KIR3DP gene

may represent the ‘Ur-KIR’ gene of all ‘higher’ primate KIRs. This

gene already contains the repetitive elements MLTD1, MER70B,

MSTB1 in its introns, which are assumed to be integrated about

60–100 mya [25], a time that is compatible with the splitting of

lemurs and human of about 65–90 mya [26]. Thus, we postulate

that KIR and CD94/NKG2 receptors evolved differently in

primates: while in the lineage leading to ‘lower’ primates CD94

and NKG2 but not KIR genes expanded, the opposite happened in

the lineage leading to ‘higher’ primates where KIR genes expanded

and CD94 and NKG2 co-evolved with the non-classical MHC-E

molecule to become a conserved receptor/ligand system (Figure 8).

The finding that ‘lower’ primates did not amplify and diversify KIR

or Ly49 genes but, instead, evolved a polymorphic CD94/NKG2

system, strengthens previous assumptions that mammals only

utilise a single class of polymorphic NK cell receptors, despite their

obvious ability to develop multiple classes [27,28]. Most likely, this

development is influenced by the pathogenic threat these

organisms are subjected to and can involve different receptor

types such as monomeric KIR, heterodimeric CD94/NKG2, and

homodimeric Ly49. Nevertheless, mammalian species are

equipped with all types of receptor genes [1], which gives some

flexibility for adaptation according to NK cell receptor and ligand

requirements.

All class I genes in the MHC equivalent genomic region on grey

mouse lemur chromosome 6 are pseudogenes and all functional

MHC class I genes were translocated to chromosome 26.

Additionally, no functional MIC gene could be identified in any

of the class I gene-containing regions in the grey mouse lemur.

However, this finding is not surprising, as NKG2D ligands are

numerous and functionally redundant [29], absence of MIC is

evident in rodents [30] and deletions of both MICA and MICB

were reported in East-Asians [31]. In addition to this unusual

organisation of the grey mouse lemur MHC, a striking difference to

‘higher’ primates is the apparent absence of a strict HLA-E

orthologue or functional homologue. As the BAC library was

screened exhaustively and in the light of our genome-wide

approach published earlier [18], it appears rather unlikely that

MHC-E-like class I genes were not detected. Thus, the putative

CD94/NKG2 ligands are expected among the sequenced MHC

class I genes. Nevertheless, we cannot completely rule out the

possibility that a HLA-E-like gene was not detected by our

approach or that a gene with HLA-E-like function is among the

detected MHC class I genes. There has been some debate in the

past on whether HLA-E and mouse H2-Qa1 have a common

origin [32] or whether their similarity in the peptide-binding

region is a consequence of convergent evolution [33]. In the light

of our data, the second hypothesis appears more likely, as

diversified KIR and conserved MHC-E/CD94/NKG2 emerged

only in ‘higher’ primates and diversified Ly49 and conserved H2-

Qa1/CD94/NKG2 evolved independently in rodents.

The observed positive diversifying selection in ‘lower’ primates

is more pronounced in the three CD94 than the NKG2 genes,

suggesting that the CD94 molecules have significant impact on

the binding of the polymorphic MHC class I ligands and their

bound peptides. Indeed, the recently determined three-dimen-

sional structure of human CD94/NKG2A in complex with HLA-

E revealed that CD94 and NKG2A contribute about 80% and

20%, respectively, to the interaction with HLA-E and its bound

peptide [22,23]. Translated to the situation in ‘lower’ primates,

duplication of CD94 genes and their strong sequence diversifica-

tion by positive diversifying selection reflects the requirement to

maintain binding to polymorphic (classical) MHC class I

molecules and bound peptides. Finally, we demonstrate that all

possible CD94/NKG2 combinations are able to form heterodi-

mers at the cell surface, revealing important implications:

exchange of the CD94 or the NKG2 subunit is likely to influence

the binding specificity for MHC class I ligands and their bound

peptide and the functional properties (inhibitory or stimulating) of

the receptor. For example, the combination of the three CD94

and five NKG2 molecules in the grey mouse lemur or three
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CD94 and eight NKG2 molecules in the ruffed lemur gives rise to

15 or 24 different NK cell receptors, respectively. Thus, we

conclude that the NK cell receptor repertoire in ‘lower’ primates

is not mainly achieved by duplications, but rather by combina-

torial diversity, a phenomenon that was so far unknown for any

NK cell receptor. NK cells were recently shown to exhibit

features of adaptive immunity, namely immunological memory

[34]. Combinatorial diversity of immune receptors is a further

hallmark of adaptive immunity. Although the combinatorial

diversity of ‘lower’ primate CD94/NKG2 receptors is obviously

much less than that usually seen for B or T cell receptors, our

data additionally highlight the close relationship of two

lymphocyte subsets: natural killer cells and cytotoxic T cells.

In summary, we have uncovered a ‘third way’ of polymorphic

and diversified NK cell receptors in mammals. The CD94/NKG2

receptor system (and not KIR) of ‘lower’ primates is characterised

by duplication, sequence diversification by means of positive

diversifying selection and allelic diversity. Consistent with this

highly dynamic CD94/NKG2 system, the MHC class I molecules

as putative ligands of these receptors show strong signs of co-

evolution and an unusual chromosomal organisation. CD94 and

NKG2 subunits constitute the main NK cell receptor repertoire in

‘lower’ primates and are freely combinable. This finding discloses

a so far unknown mechanism of generating the NK cell receptor

diversity: combinatorial diversity.

Materials and Methods

Ethics statement
All experiments were carried out in accordance with the French

Rural Code Directive (articles R21-87-90), the German Animal

Welfare Law, guidelines of the German Research Foundation, and

the European Communities Council Directive (86/609/EEC).

Field sampling of Microcebus murinus tissue samples in Madagascar

was conducted under the autorisation of the Ministère de

l’’Environnement, des Forêts et du Tourisme of the Republic of

Madagascar. Samples were exported under a CITES permit by

the Bundesamt für Naturschutz, Bonn, Germany.

Blood and DNA samples
Grey mouse lemurs (Microcebus murinus) and black-and-white

ruffed lemurs (Varecia variegata) are housed in the facilities of the

UMR CNRS/MNHN and the German Primate Center, respec-

tively. Blood was obtained during regular veterinary inspections.

DNA samples from potto and tarsier were kindly obtained from

Helga Schulze (University of Bochum, Germany) and Jürgen

Schmitz (University of Münster, Germany).

BAC library screening and clone sequencing
Filters of BAC library CHORI-257 derived from a female grey

mouse lemur (Microcebus murinus) were obtained from BACPAC

Figure 8. Model of NK cell receptor evolution in primates.
doi:10.1371/journal.pgen.1000688.g008
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Resources at the Children’s Hospital Oakland Research Institute

(http://bacpac.chori.org/home.htm). Filters were screened with

gene probes for human KIR2DL4, LILRA2, NCR1, and rhesus

macaque KIR3DX1 (LRC region), human CD94, NKG2A, and

Ly49L (NKC region), catta BAT1, POU5F1, TCF19, and rat Gnl1,

Cat56, Trim39, Trim26, Trim10, Trim15, Ppp1r11, Mog, and mouse

lemur MHC class I (MHC class I region). Screening with

radioactively labelled probes was done according to the supplier’s

recommendations.

BAC clone DNA was purified by CsCl density centrifugation

and isolated DNA was sheared by sonification. DNA fragments of

1.5–3.5 kb were selected and cloned into plasmid pUC19. Inserts

were amplified by PCR using insert-flanking M13 forward and

reverse primers and amplificates were sequenced with Applied

Biosystems BigDye terminator chemistry and analyzed in

ABI3730xl sequencers (Applied Biosystems). Raw sequences were

processed by Phred (www.phrap.org) and assembled into a

contiguous sequence by Phrap (www.phrap.org). Both programs

are available from Phil Green, University of Washington. Exons

and introns of genes were identified in finished BAC clone

sequences manually or by BLAST and FGENESH-2 algorithms

(http://www.ncbi.nlm.nih.gov/BLAST/; http://www.softberry.

com/all.htm). All BAC clone sequences have ‘finished sequencing’

quality (1 putative mistake/100,000 bases) and the data have

Phred values of 60.

Exons 4 to 6 of the grey mouse lemur CD94, NKG2, and Ly49L

genes were amplified from genomic DNA of 12 (all genes) and

additional 34 (only CD94 genes) unrelated free-living grey mouse

lemur individuals from the Kirindy region in Madagascar. Specific

primers (Table S2) were designed to be located in exon-flanking

introns. PCR products were completely sequenced on both strands

and SNPs were identified.

Primers were designed for amplification of conserved regions of

potto and tarsier CD94 exon 4, intron 4 and exon 5 (Table S2).

Genomic DNA was used of a single potto (Perodicticus potto) and a

single Philippine tarsier (Tarsius syrichta) individual. PCR products

were cloned and sequenced. For every CD94 sequence at least two

identical clones were identified.

DDBJ/EMBL/GenBank database accession numbers for BAC

clones of MHC class I regions (AB480748, FP236831, FP236832,

FP236833, FP236839), NKC region (haplotype 1: FP236838,

haplotype 2: FP236834), LRC region (CR974412, CR974436,

CR974413), and cDNA of grey mouse lemur and ruffed lemur

CD94, NKG2 and Ly49L sequences as well as potto and tarsier CD94

sequences were assigned accession numbers FJ869057-FJ869114.

Grey mouse lemur KIR3DX1 and DAP12 cDNA sequences are

found under FJ882074-FJ882079.

RT–PCR and expression constructs
Total RNA was extracted from a liver sample of a grey mouse

lemur and a blood sample from a further grey mouse lemur housed

at UMR CNRS/MNHN in Brunoy (France) and a blood sample

from a black-and-white ruffed lemur (Varecia variegata variegata)

housed at the German Primate Center. Reverse transcription was

performed with M-MLV reverse transcriptase (Promega). Based on

the mouse lemur BAC sequences primers were designed to obtain

the complete open reading frames of mouse lemur and ruffed lemur

NKC genes. cDNA sequences of the ruffed lemur were completed by

59- and 39-RACE PCR with the GeneRacer Kit (Invitrogen). All

cDNA sequences were cloned and sequenced. For interaction

studies, grey mouse lemur CD94 and NKG2 cDNA sequences were

inserted into the pcDNA3.1/NT-GFP-TOPO and the pcDNA3.1/

V5-His-TOPO vector (Invitrogen), respectively. For cell surface

expression, the three CD94 cDNA sequences were expressed

without GFP at the NH2 terminus, but with a FLAG tag

(DYKDDDDK) at the COOH terminus for extracellular detection.

The grey mouse lemur DAP12 cDNA was isolated by RT-PCR.

The encoded DAP12 was fused at the COOH terminus with the c-

myc peptide epitope (EQKLISEEDL). Primer sequences and

performed PCRs are listed in Table S2.

Transfection, co-immunoprecipitation, and flow
cytometry

CD94 and NKG2 molecules were tagged with GFP and with

V5 for co-immunoprecipitation experiments. To avoid any

potential unwanted interactions between the tags, GFP was fused

to the amino terminus of CD94 ( = intracellular localisation) and

V5 to the carboxy terminus of NKG2 molecules ( = extracellular

localisation). Expression constructs were transiently transfected in

the human 293T cell line using Metafectene (Biontex GmbH).

24 h after transfection, cells (16107 cells/ml) were lysed in NP-40

lysis buffer containing 0.1% NP-40, 50 mM Tris, pH 7.6,

150 mM NaCl, 4 mM EDTA and protease inhibitors (Roche).

Lysates were incubated overnight at 4uC with monoclonal mouse

anti-GFP antibody (Clontech) and then incubated with protein G

Sepharose 4 Fast Flow beads (GE Healthcare) for 3 h. Sepharose

beads were washed five times with lysis buffer and bound proteins

were eluted with loading buffer at 95uC for 10 minutes. Samples

were electrophoresed in 10% polyacrylacrylamide gels and

transferred to nitrocellulose membrane. Western blotting was

performed with HRP-coupled monoclonal mouse anti-V5 anti-

body (Invitrogen) to test for co-immunoprecipitated V5-tagged

NKG2 molecules. Deglycosylation was performed with PNGase F

according to supplier’s recommendations (New England Biolabs).

For analysis of CD94/NKG2 receptors on the cell surface,

CD94 was FLAG-tagged at the carboxy terminus ( = extracellular

localisation). Respective expression constructs of CD94 together

with the V5-tag NKG2 constructs (see above) were transiently

transfected in 293T cells. Cell surface expression of CD94/

NKG2-2 and CD94/NKG2-5 receptors were tested by additional

transient transfection with c-myc-tagged mouse lemur DAP12

expression constructs. As control, single transfections with either

CD94 or NKG2 expression constructs were performed. Potential

formation of heterodimers of grey mouse lemur NKG2 and

human CD94 (from 293T cells) was excluded by testing with an

anti-human CD94 antibody (AbD Serotec). 24 hours post

transfection cells were detached from cell culture dishes and

washed twice with 16PBS. Cells were stained with APC-labelled

anti-V5 (Abcam) and FITC-labelled anti-FLAG (Sigma-Aldrich)

monoclonal antibodies for surface expression of NKG2 and

CD94. In parallel experiments, expression of DAP12 was

monitored with an anti-c-myc mouse monoclonal antibody

(Sigma-Aldrich) by intracellular staining of cells, which were

previously fixed with 1.5% paraformaldehyde (Merck) and

permeabilized with 0.25% saponin (Roth), and binding was

detected by a PE-Cy5-labelled goat anti-mouse IgG polyclonal

antibody (Santa Cruz Biotechnology). After washing twice with 16
PBS cells were resuspended in 200 ml of 16 PBS and 50,000

events were measured. Living cells were gated based on forward

and side scatter characteristics and analysed for APC and FITC

staining. All samples were analysed in a LSRII flow cytometer

(BD). Data were acquired with BD FACS Diva 5.1 software (BD)

before analysis with FlowJo 7.2.9 software (TreeStar).

Phylogenetic analyses
CD94, NKG2 and MHC class I nucleotide sequences were aligned

with MAFFT [35] and corrected manually. Phylogenetic analyses

were conducted using three methods: neighbor-joining (NJ),
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parsimony and Bayesian phylogenetics. NJ analyses were per-

formed with MEGA3.1 [36] using the Tamura-Nei method with

1,000 replicates. PAUP*4.0b10 [37] and the tree bisection-

reconnection branch swapping algorithm were used for parsimony

analyses with 1,000 replicates and a heuristic search. For the

Bayesian analysis, the model of DNA substitution was selected

using MODELTEST3.7 [38] and the Akaike information

criterion. Bayesian phylogenetic analyses were conducted with

MRBAYES3.1.2 [39]; sampling was performed with one cold

chain and three heated chains, which were run for 106 generations

or until average standard deviation of split frequencies was ,0.01.

Trees were sampled every 200 generations and the first 2,500 trees

were discarded before a consensus tree was generated; three

simultaneous runs were conducted and average standard deviation

of split frequencies was always ,0.01. The tree topologies

obtained with the three methods were compared with

PAUP*4.0b10 using the Shimodaira-Hasegawa test of alternative

phylogenetic hypotheses with re-sampling estimated log-likelihood

optimization, and 10,000 bootstrap replicates; in all analyses the

test failed to reject any of the alternative tree topologies (a= 0.05).

This comparison was made with the maximum likelihood model

defined by MODELTEST. A maximum-likelihood analysis was

also performed for the study of the NKG2 cytoplasmic and

transmembrane sequences using RAxML7 [40] under the

GTR+CAT model with 1,000 replicates (rapid bootstrapping).

Selection analyses
dN/dS (v) ratios for CD94 and NKG2 lectin-like domains were

estimated using PAML v3.15 [41] with the F3 X 4 model of codon

frequencies. Bayesian tree topologies were used for these analyses

and three sets of likelihood ratio tests were conducted to compare

null models that do not allow v.1 (M1a, M7 and M8a) with

models that do (M2a and M8). Significance was assessed by

comparing twice the difference in likelihood between the models

(2DL) to a x2 distribution with one (M8a/M8) or two (M1a/M2

and M7/M8) degrees of freedom. Codons with v.1 were

identified using the Bayes Empirical Bayes approach [42].

The distribution of the selected sites in the CD94/NKG2 lectin-

like domains was studied using a binomial distribution: considering

V= (0,1,2,…,n), "k M V, p = (X = k) = nCk * pk * qn2k. This

indicates for example that under a random distribution it is

unlikely to have more than 5 of the 21 positively selected sites in

the ligand binding region that represents 28 of the 239 total sites

(a= 0.05); so the fact that we observe 7 of the 21 positively selected

sites in this region indicates a distribution biased toward this region

(a = 0.01).

Supporting Information

Figure S1 Mouse lemur KIR3DX1 sequence. (A) cDNA, (B)

deduced amino acid sequence and (C) genomic sequence. cDNA

sequence was determined by RT-PCR of mouse lemur PBMC.

Start codon is marked in green, stop codon in red, exons in grey,

and ITIM in the protein sequence in yellow. Nucleotides and

corresponding amino acid residues that are absent in an

alternatively spliced product are shown in italics. Transmembrane

region is underlined.

Found at: doi:10.1371/journal.pgen.1000688.s001 (0.04 MB PDF)

Figure S2 Multiple sequence alignments of CD94 proteins. (A)

Multiple sequence alignment of mouse lemur, ruffed lemur,

human, and common marmoset CD94 proteins. Sequences are

subdivided into cytoplasmic (CY), transmembrane (TM), stalk, and

C-type lectin-like domain (CTLD). (B) Amino acid sequence

identities (in %) of mouse lemur, ruffed lemur, human and

common marmoset CD94. Mimu, Microcebus murinus; Vava, Varecia

variegata; Hosa, Homo sapiens; Caja, Callithrix jacchus.

Found at: doi:10.1371/journal.pgen.1000688.s002 (0.01 MB PDF)

Figure S3 Multiple sequence alignments of NKG2 proteins. (A)

mouse lemur and (B) ruffed lemur NKG2 and Ly49L amino acid

sequences. Sequences are subdivided into cytoplasmic (CY),

transmembrane (TM), stalk, and C-type lectin-like domain

(CTLD). ITIM are highlighted in green, YxxM motif in yellow

and positively charged amino acids in the TM in red. An ITIM at

unusual position was found in mouse lemur NKG2-5 and is

marked in blue. It is not clear whether this motif functions as an

ITIM. Due to failure of obtaining a 59-RACE product for ruffed

lemur Ly49L, the corresponding deduced amino acid sequence is

incomplete at the amino terminal end. The two identified ruffed

lemur Ly49L alleles show only a single synonymous substitution

and have therefore identical deduced amino acid sequences.

Mimu, Microcebus murinus; Vava, Varecia variegata.

Found at: doi:10.1371/journal.pgen.1000688.s003 (0.02 MB PDF)

Figure S4 CD94 exon 4 to exon 5 sequence alignment of (A)

potto (Perodicticus potto) and (B) Philippine tarsier (Tarsius syrichta).

The shading threshold is 55% sequence identity. N in the

sequences of potto CD94-6 and -7 and of tarsier CD94-9 denotes

an unknown number of thymidine nucleotides. The CD94-7

sequence of the tarsier contains a stop codon in exon 4 which is

highlighted in bold and underlined. Pepo, Perodicticus potto; Tasy,

Tarsius syrichta. Alu elements are underlined.

Found at: doi:10.1371/journal.pgen.1000688.s004 (0.03 MB PDF)

Figure S5 Phylogenetic analyses of MHC class I genes with

complete coding sequences excluding the peptide binding residues.

Analysis and display are as described for Figure 3. Numbers as gene

names for MHC class I are the same as in Figure 1C. Non-primate

sequences included are mouse (H2) and rat (RT1). Peptide binding

residues were defined according to Bjorkman et al. [44]. Patr, Pan

troglodytes; Gogo, Gorilla gorilla; Hyla, Hylobates lar; Saoe, Saguinus oedipus;

Sasc, Saimiri sciureus; Mamu, Macaca mulatta; Mimu, Microcebus murinus;

Aotr, Aotus trivirgatus; Caja, Callithrix jacchus; Pipi, Pithecia pithecia.

Found at: doi:10.1371/journal.pgen.1000688.s005 (0.07 MB PDF)

Figure S6 Contacts of CD94/NKG2 to bound peptide (Peptide)

and to the MHC class I heavy chain (MHC) as well as residues

mediating heterodimer formation (Dimer) based on the human

CD94/NKG2A crystal structure [22,23]. Additionally, Peptide

and MHC contacts (Ligand binding) and all known contact

residues (All) are summarised.

Found at: doi:10.1371/journal.pgen.1000688.s006 (4.54 MB TIF)

Table S1 Nucleotide and amino acid substitutions between

different alleles of mouse lemur CD94, NKG2, and Ly49L

sequences. SNPs were determined by sequencing the exons coding

for the lectin-like domain (exon 4–6) of 12 individuals for NKG2

and Ly49L. For CD94 a further 34 animals were analysed.

Found at: doi:10.1371/journal.pgen.1000688.s007 (0.04 MB PDF)

Table S2 Primer sequences and performed PCRs.

Found at: doi:10.1371/journal.pgen.1000688.s008 (0.08 MB PDF)
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