L. Amado and J. Monserrat, Oxidative stress generation by microcystins in aquatic 499 animals: Why and how, Environment International, vol.36, pp.226-235, 2010.

S. Azimi and V. Rocher, Influence of the water quality improvement on fish population in 501 the Seine River, Science of the Total 502 Environment, vol.542, pp.955-964, 2016.

N. C. Bols, J. L. Brubacher, R. C. Ganassin, and L. E. Lee, Ecotoxicology and innate 504 immunity in fish, Developmental and Comparative Immunology, vol.25, issue.8-9, pp.853-873, 2001.

J. G. Bundy, M. P. Davey, and M. R. Viant, Environmental metabolomics: a critical 506 review and future perspectives, Metabolomics, vol.5, issue.1, pp.3-21, 2008.

S. E. Bunn, Grand challenge for the future of freshwater ecosystems, p.508, 2016.

C. Malbrouck and P. Kestemont, Effects of microcystins on fish, Environ. Toxicol. Chem, vol.584, issue.1, pp.72-86, 2006.

S. Maloufi, A. Catherine, D. Mouillot, C. Louvard, A. Couté et al., , p.586

M. , Environmental heterogeneity among lakes promotes hyper ß-diversity across 587 phytoplankton communities, Freshwater Biology, vol.61, issue.5, pp.633-645, 2016.

B. Marie, H. Huet, A. Marie, C. Djediat, S. Puiseux-dao et al., , p.589

M. Edery, Effects of a toxic cyanobacterial bloom (Planktothrix agardhii) on 590 fish: Insights from histopathological and quantitative proteomic assessments following 591 the oral exposure of medaka fish (Oryzias latipes), p.592, 2012.

, Netherlands) 114-115C, pp.39-48

T. I. Mclean, Eco-omics": A Review of the Application of Genomics, p.594, 2013.

. Transcriptomics, Proteomics for the Study of the Ecology of Harmful Algae

, Microbial Ecology, vol.65, issue.4, pp.901-915

H. W. Paerl and V. J. Paul, Climate Change: Links to Global Expansion of Harmful 597, 2011.

, Cyanobacteria. Water Research, vol.46, issue.5, pp.1363-1349

J. M. O'neil, T. W. Davis, M. A. Burford, and C. J. Gobler, The rise of harmful 599 cyanobacteria blooms: The potential roles of eutrophication and climate change, 2012.

, Harmful Algae, vol.14, pp.313-334

Q. Qiao, S. Le-manach, H. Huet, E. Duvernois-berthet, S. Chaouch et al., , p.602

L. Ponger, A. Marie, and L. Mathéron, An integrated omic analysis of 603 hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible 604 mechanisms of reproductive toxicity, Environ. pollut, vol.219, pp.119-131, 2016.

C. Revenga, I. Campbell, R. Abell, P. De-villiers, and M. Bryer, Prospects for 606 monitoring freshwater ecosystems towards the 2010 targets, Philosophical 607 transactions of the Royal Society of London. Series B, vol.360, pp.608-397, 1454.

F. Rohart, B. Gautier, A. Singh, and K. A. Le-cao, mixOmics: An R package for 610 20 'omics feature selection and multiple data integration, PLoS computational biology, vol.611, issue.11, p.1005752, 2017.

L. M. Samuelsson and D. G. Larsson, Contributions from metabolomics to fish 613 research, Molecular bioSystems, vol.4, issue.10, pp.974-979, 2008.

J. Sardans, J. Peguelas, and A. Rivas-ubach, Ecological metabolomics: Overview of 615 current developments and future challenges, Chemoecology, vol.21, issue.4, pp.191-225, 2011.

R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. Von-gunten, and B. Wehrli, , p.617, 2010.

, Water Pollution and Human Health, Annual Review of Environment and Resources, vol.618, issue.1, pp.109-136

B. Sotton, J. Guillard, O. Anneville, M. Maréchal, O. Savichtcheva et al., , 2014.

, Trophic transfer of microcystins through the lake pelagic food web: Evidence for the 621 role of zooplankton as a vector in fish contamination. Science of The Total 622 Environment 466-467, pp.152-163

B. Sotton, I. Domaizon, O. Anneville, F. Cattanéo, and J. Guillard, Nodularin and 624 cylindrospermopsin: a review of their effects on fish, Reviews in Fish Biology and 625 Fisheries, vol.25, pp.1-19, 2015.

B. Sotton, A. Paris, S. Le-manach, A. Blond, G. Lacroix et al., Global metabolome changes induced by cyanobacterial blooms in three 628 representative fish species, Science of the Total Environment, vol.627, pp.333-342, 2017.

B. Sotton, A. Paris, S. Manach, . Le, A. Blond et al., , p.630

S. Labrut and G. Chiapetta, Metabolic changes in Medaka fish induced by 631 cyanobacterial exposures in mesocosms : an integrative approach combining 632 proteomic and metabolomic analyses, Scientific reports, vol.7, pp.1-13, 2017.

M. Teil, K. Tlili, M. Blanchard, P. Labadie, F. Alliot et al., , 2014.

P. Biphenyls, Polybrominated Diphenyl Ethers, and Phthalates in Roach 635 from the Seine River Basin (France): Impact of Densely Urbanized Areas. Archives of 636 environmental contamination and toxicology 66, pp.41-57

A. Tenenhaus, C. Philippe, V. Guillemot, K. A. Le-cao, J. Grill et al., , 2014.

, Variable selection for generalized canonical correlation analysis, Biostatistics, vol.15, issue.3, pp.639-569

M. Wang, Sharing and community curation of mass spectrometry data with 641, 2016.

, Global Natural Products Social Molecular Networking, Nature Biotechnology, vol.34, issue.8, pp.642-828

H. Wu, A. D. Southam, A. Hines, and M. R. Viant, High-throughput tissue extraction 644 21 protocol for NMR-and MS-based metabolomics, Analytical biochemistry, vol.372, issue.2, pp.645-204, 2008.

C. Yepremian, A. Catherine, and C. Bernard, SOP202: Chlorophyll a extraction, vol.647, 2017.

, Handbook on Cyanobacterial Monitoring and Cyanotoxin Analysis

L. Spoof and G. Codd, , p.458