R. Adrian, C. M. O'reilly, H. Zagarese, S. B. Baines, D. O. Hessen et al., Lakes as sentinels of climate change, Limnol. Oceanogr, vol.54, pp.2283-2297, 2009.

A. Aguilera, L. Aubriot, R. O. Echenique, G. L. Salerno, B. M. Brena et al., Synergistic effects of nutrients and light favor Nostocales over non-heterocystous cyanobacteria, Hydrobiologia, vol.794, pp.241-255, 2017.

A. Aguilera, S. Haakonsson, M. V. Martin, G. L. Salerno, and R. O. Echenique, Bloom-forming cyanobacteria and cyanotoxins in Argentina: a growing health and environmental concern, Limnologica, vol.69, pp.103-114, 2017.

V. Almanza, P. Pedreros, H. Dail-laughinghouse, J. Félez, O. Parra et al., Association between trophic state, watershed use and blooms of cyanobacteria in south-central Chile, 2018.

I. L. Bagatini, A. Eiler, S. Bertilsson, D. Klaveness, L. P. Tessarolli et al., Host-specificity and dynamics in bacterial communities associated with bloom-forming freshwater phytoplankton, PLoS One, vol.9, 2014.

A. Barberán, S. T. Bates, E. O. Casamayor, and N. Fierer, Using network analysis to explore co-occurrence patterns in soil microbial communities, ISME J, vol.6, pp.343-351, 2012.

J. R. Beaver, C. E. Tausz, K. C. Scotese, A. I. Pollard, and R. M. Mitchell, Environmental factors influencing the quantitative distribution of microcystin and common potentially toxigenic cyanobacteria in U.S. lakes and reservoirs, Harmful Algae, vol.78, pp.118-128, 2018.

A. E. Beck, P. Y. Shen, H. Beltrami, J. C. Mareschal, J. ?afanda et al., A comparison of five different analyses in the interpretation of five borehole temperature data sets, Glob. Planet. Chang, vol.6, pp.101-112, 1992.

S. Behl, A. Donval, and H. Stiborb, The relative importance of species diversity and functional group diversity on carbon uptake in phytoplankton communities, Limnol. Oceanogr, vol.56, pp.683-694, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00635679

M. Bernhardt-barry, D. Jyotishka, C. Wood, and J. Price, Predicting Soil Type from Non-destructive Geophysical Data Using Bayesian Statistical Methods, 2018.

S. Bonilla, L. Aubriot, M. C. Soares, M. González-piana, A. Fabre et al., What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii?, FEMS Microbiol. Ecol, vol.79, pp.594-607, 2012.

C. Camera, Z. Zomeni, J. S. Noller, A. M. Zissimos, I. C. Christoforou et al., A high resolution map of soil types and physical properties for Cyprus: a digital soil mapping optimization, Geoderma, vol.285, pp.35-49, 2017.

C. C. Carey, B. L. Brown, and K. L. Cottingham, The cyanobacterium Gloeotrichia echinulata increases the stability and network complexity of phytoplankton communities, Ecosphere, vol.8, 2017.

C. C. Carey, K. L. Cottingham, K. C. Weathers, and J. A. Brentrup, Experimental blooms of the cyanobacterium Gloeotrichia echinulata increase phytoplankton biomass , richness and diversity in an oligotrophic lake, vol.36, pp.364-377, 2014.

C. C. Carey, B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton, and J. D. Brookes, Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate, Water Res, vol.46, pp.1394-1407, 2012.

A. Catherine, D. Mouillot, N. Escoffier, C. Bernard, and M. Troussellier, Cost effective prediction of the eutrophication status of lakes and reservoirs, Freshw. Biol, vol.55, pp.2425-2435, 2010.

A. Catherine, M. Troussellier, and C. Bernard, Design and application of a stratified sampling strategy to study the regional distribution of cyanobacteria, Water Res, vol.42, pp.4989-5001, 2008.

, Water Quality -Guidance Standard on the Enumeration of Phytoplankton Using Inverted Microscopy (Utermöhl Technique). Statute, 2006.

C. Chiu, Y. Wang, B. A. Walther, and A. Chao, An improved nonparametric lower bound of species richness via a modified good turing frequency formula, BIO-METRIC Methodol, 2014.

A. A. Corcoran and W. J. Boeing, Biodiversity increases the productivity and stability of phytoplankton communities, PLoS One, vol.7, 2012.

W. Dai, J. Chen, and J. Xiong, Concept of microbial gatekeepers: positive guys?, Appl. Microbiol. Biotechnol, 2018.

R. E. Danczak, M. D. Johnston, C. Kenah, M. Slattery, and M. J. Wilkins, Microbial community cohesion mediates community turnover in unperturbed aquifers, vol.3, pp.1-15, 2018.

Y. Deng, Y. H. Jiang, Y. Yang, Z. He, F. Luo et al., Molecular ecological network analyses, BMC Bioinf, vol.13, 2012.

F. Dias, J. T. Antunes, T. Ribeiro, J. Azevedo, V. Vasconcelos et al., Cyanobacterial allelochemicals but not cyanobacterial cells markedly reduce microbial community diversity, Front. Microbiol, vol.8, 1495.

A. Dinno, dunn.test: Dunn's Test of Multiple Comparisons Using Rank Sums, 2017.

M. T. Dokulil and K. Teubner, Cyanobacterial dominance in lakes, Hydrobiologia, vol.438, pp.1-12, 2000.

K. Faust, G. Lima-mendez, J. S. Lerat, J. F. Sathirapongsasuti, R. Knight et al., Cross-biome comparison of microbial association networks, Front. Microbiol, vol.6, pp.1-13, 2015.

K. Faust and J. Raes, Microbial interactions: from networks to models, Nat. Rev. Microbiol, vol.10, pp.538-550, 2012.

C. T. Filstrup, H. Hillebrand, A. J. Heathcote, W. S. Harpole, and J. A. Downing, Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities, Ecol. Lett, vol.17, pp.464-474, 2014.

M. A. Freilich, E. Wieters, B. R. Broitman, P. A. Marquet, and S. A. Navarrete, Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities?, Ecology, vol.99, pp.690-699, 2018.

L. Gamfeldt and H. Hillebrand, Effects of total resources, resource ratios, and species richness on algal productivity and evenness at both metacommunity and local scales, PLoS One, vol.6, 2011.

J. E. Goldford, N. Lu, D. Baji?, S. Estrela, M. Tikhonov et al., Emergent simplicity in microbial community assembly, Science, vol.361, pp.469-474, 2018.

I. A. Guedes, C. T. Rachid, L. M. Rangel, L. H. Silva, P. M. Bisch et al., Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir, Front. Microbiol, vol.9, 2018.

C. M. Herren and K. D. Mcmahon, Keystone taxa predict compositional change in microbial communities, Environ. Microbiol, vol.20, pp.2207-2217, 2018.

C. M. Herren and K. D. Mcmahon, Cohesion: a method for quantifying the connectivity of microbial communities, ISME J, vol.11, pp.2426-2438, 2017.

H. Hillebrand, Biovolume calculation for palagic and benthic microalgae, J. Phycol, vol.424, pp.403-424, 1999.

D. Hodapp, S. Meier, F. Muijsers, T. H. Badewien, and H. Hillebrand, Structural equation modeling approach to the diversity-productivity relationship of Wadden Sea phytoplankton, Mar. Ecol. Prog. Ser, vol.523, pp.31-40, 2015.

A. Holland and S. Kinnear, Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide, Mar. Drugs, vol.11, pp.2239-2258, 2013.

R. Holmes, R. Norris, T. Smayda, and E. Wood, Recommended Procedures for Measuring the Productivity of Plankton Standing Stock and Related Oceanic Properties, Anonymous (Ed.), pp.17-46, 1969.

A. Hu, F. Ju, L. Hou, J. Li, X. Yang et al., Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community, Environ. Microbiol, vol.19, pp.4993-5009, 2017.

M. D. Humphries and K. Gurney, Network small-world-ness : a quantitative method for determining canonical network equivalence, PLoS One, vol.3, 2008.

D. A. Jackson, Compositional data in community Ecology : the paradigm or peril of Proportions ?, Ecology, vol.78, pp.929-940, 1997.

A. C. Jones, K. D. Hambright, and D. A. Caron, Ecological patterns among bacteria and microbial eukaryotes derived from network analyses in a low-salinity lake, Microb. Ecol, vol.75, pp.917-929, 2018.

B. Karimi, P. Alain, M. Nicolas, N. Bernard, D. Gilbert et al., Microbial diversity and ecological networks as indicators of environmental quality. Environ, Chem. Lett, vol.15, pp.265-281, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516976

Z. D. Kurtz, C. L. Müller, E. R. Miraldi, D. R. Littman, M. J. Blaser et al., Sparse and compositionally robust inference of microbial ecological networks, PLoS Comput. Biol, vol.11, pp.1-25, 2015.

J. Leflaive and L. Ten-hage, Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins, Freshw. Biol, vol.52, pp.199-214, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00275903

S. Lehtinen, T. Tamminen, R. Ptacnik, and T. Andersen, Phytoplankton species richness, evenness, and production in relation to nutrient availability and imbalance, Limnol. Oceanogr, vol.62, pp.1393-1408, 2017.

Z. Li, G. Wang, Y. Yang, X. Yan, H. Sun et al., Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective, Water Res, vol.125, pp.449-457, 2017.

A. Liaw and M. Wiener, Classification and regression by random forest, vol.2, pp.18-22, 2002.

E. Litchman, Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria, Aquat. Microb. Ecol, vol.31, pp.241-248, 2003.

L. Liu, H. Chen, M. Liu, J. R. Yang, P. Xiao et al., Response of the eukaryotic plankton community to the cyanobacterial biomass cycle over 6 years in two subtropical reservoirs, 2019.

M. Liu, L. Liu, H. Chen, Z. Yu, J. R. Yang et al., Community dynamics of free-living and particle-attached bacteria following a reservoir Microcystis bloom, Sci. Total Environ, vol.660, pp.501-511, 2019.

I. Louati, N. Pascault, D. Debroas, C. Bernard, J. F. Humbert et al., Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus, PLoS One, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01272957

D. Lovell, W. Muller, J. Taylor, A. Zwart, C. Helliwell et al., Proportions, percentages, ppm: do the molecular biosciences treat compositional data right, Compositional Data Analysis: Theory and Applications, pp.1-13, 2011.

F. Luo, J. Zhong, Y. Yang, R. H. Scheuermann, and J. Zhou, Application of random matrix theory to complex networks, Phys. Lett. A, vol.357, pp.420-423, 2006.

S. Maloufi, A. Catherine, D. Mouillot, C. Louvard, A. Couté et al., Environmental heterogeneity among lakes promotes hyper -diversity across phytoplankton communities, Freshw. Biol, vol.61, pp.633-645, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01923982

E. Mantzouki, P. M. Visser, M. Bormans, and B. W. Ibelings, Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes, Aquat. Ecol, vol.50, pp.333-350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01162828

J. W. Marion, F. Zhang, D. Cutting, and J. Lee, Associations between county-level land cover classes and cyanobacteria blooms in the United States, Ecol. Eng, vol.108, pp.556-563, 2017.

S. Marmen, D. Aharonovich, M. Grossowicz, L. Blank, Y. Z. Yacobi et al., Distribution and habitat specificity of potentially-toxic Microcystis across climate, land, and water use gradients, Front. Microbiol, vol.7, 2016.

S. J. Moe, S. Haande, and R. M. Couture, Climate change, cyanobacteria blooms and ecological status of lakes: a Bayesian network approach, Ecol. Model, vol.337, pp.330-347, 2016.

M. E. Monchamp, P. Spaak, I. Domaizon, N. Dubois, D. Bouffard et al., Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication, Nat. Ecol. Evol, vol.2, pp.317-324, 2018.

A. D. Moura, N. K. Aragão-tavares, and C. A. Amorim, Cyanobacterial blooms in freshwater bodies from a semiarid region, northeast Brazil: a review, J. Limnol, vol.77, pp.179-188, 2018.

L. L. Ndlela, P. J. Oberholster, J. H. Van-wyk, and P. H. Cheng, An overview of cyanobacterial bloom occurrences and research in Africa over the last decade, Harmful Algae, vol.60, pp.11-26, 2016.

I. O'farrell, C. Motta, M. Forastier, W. Polla, S. Otaño et al., Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina, Harmful Algae, vol.83, pp.1-13, 2019.

, Eutrophication of Waters. Monitoring, Assessement and Control, OCED, 1982.

J. Oksanen, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin et al., Vegan: Community Ecology Package, 2016.

I. Olenina, S. Hajdu, L. Edler, N. Wasmund, S. Busch et al., Biovolumes and size-classes of phytoplankton in the baltic Sea, baltic Sea environment proceedings, Sea.Environ. Proc, issue.106, p.144, 2006.

H. W. Paerl and J. Huisman, Climate: blooms like it hot, Science, vol.320, pp.57-58, 2008.

H. W. Paerl and T. G. Otten, Duelling CyanoHABs : unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria, Environ. Microbiol, vol.18, pp.316-324, 2016.

J. N. Paulson, C. Stine, O. Bravo, H. C. Pop, and M. , Differential abundance analysis for microbial marker-gene surveys, Nat. Methods, vol.10, pp.1200-1202, 2013.

G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida et al., Using graph theory to analyze biological networks, BioData Min, vol.4, 2011.

A. D. Persaud, A. M. Paterson, P. J. Dillon, J. G. Winter, M. Palmer et al., Forecasting cyanobacteria dominance in Canadian temperate lakes, J. Environ. Manag, vol.151, pp.343-352, 2015.

S. Peura, S. Bertilsson, R. I. Jones, and A. Eiler, Resistant microbial cooccurrence patterns inferred by network topology, Appl. Environ. Microbiol, vol.81, pp.2090-2097, 2015.

R. Ptacnik, A. G. Solimini, T. Andersen, T. Tamminen, P. Brettum et al., Diversity predicts stability and resource use efficiency in natural phytoplankton communities, Proc. Natl. Acad. Sci. 105, pp.5134-5138, 2008.

K. Rinke, P. Yeates, and K. O. Rothhaupt, A simulation study of the feedback of phytoplankton on thermal structure via light extinction, Freshw. Biol, vol.55, pp.1674-1693, 2010.

L. Röttjers and K. Faust, From hairballs to hypotheses-biological insights from microbial networks, FEMS Microbiol. Rev, vol.42, pp.761-780, 2018.

M. Scheffer, S. Rinaldi, A. Gragnani, L. R. Mur, and E. Van-nes, On the dominance of filamentous blue-green algae in shallow, turbid lakes, Ecology, vol.78, pp.272-282, 1997.

A. S. Schwaderer, K. Yoshiyama, P. De-tezanos-pinto, N. G. Swenson, C. A. Klausmeier et al., Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton, Limnol. Oceanogr, vol.56, pp.589-598, 2011.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software Environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

S. Shi, E. E. Nuccio, Z. J. Shi, Z. He, J. Zhou et al., The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages, Ecol. Lett, vol.19, pp.926-936, 2016.

J. Sun and D. Liu, Geometric models for calculating cell biovolume and surface area for phytoplankton, J. Plankton Res, vol.25, pp.1331-1346, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01663379

W. Tian, H. Zhang, J. Zhang, L. Zhao, M. Miao et al., Biodiversity effects on resource use efficiency and community turnover of plankton in Lake Nansihu, China. Environ. Sci. Pollut. Res, vol.24, pp.11279-11288, 2017.

M. Toporowska and B. Pawlik-skowro?ska, Four-year study on phytoplankton biodiversity in a small hypertrophic lake affected by water blooms of toxigenic cyanobacteria, Pol. J. Environ. Stud, vol.23, pp.491-499, 2014.

H. Ullah, I. Nagelkerken, S. U. Goldenberg, D. A. Fordham, M. W. Van-goethem et al., Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation, Front. Microbiol, vol.16, 2017.

C. C. Vaughn, Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions, Bioscience, vol.60, pp.25-35, 2010.

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, 2002.

C. Wagner and R. Adrian, Cyanobacteria dominance: quantifying the effects of climate change, Limnol. Oceanogr, vol.54, pp.2460-2468, 2009.

F. Wang, Y. Liang, Y. Jiang, Y. Yang, K. Xue et al., Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling, Sci. Rep, vol.5, 2015.

D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature, vol.393, pp.440-442, 1998.

J. N. Woodhouse, A. S. Kinsela, R. N. Collins, L. C. Bowling, G. L. Honeyman et al., Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake, ISME J, vol.10, pp.1337-1351, 2016.

Y. Xue, H. Chen, J. R. Yang, M. Liu, B. Huang et al., Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom, ISME J, vol.12, pp.2263-2277, 2018.

C. Yang, Q. Wang, P. N. Simon, J. Liu, L. Liu et al., Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake, Front. Microbiol, vol.8, pp.1-15, 2017.

J. R. Yang, H. Lv, A. Isabwe, L. Liu, X. Yu et al., Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs, Water Res, vol.120, pp.52-63, 2017.

D. Zhao, F. Shen, J. Zeng, R. Huang, Z. Yu et al., Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton, Sci. Total Environ, vol.573, pp.817-825, 2016.