M. Lopes, C. Cotta-ramusino, G. Liberi, and M. Foiani, Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms, Mol Cell, vol.12, pp.1499-1510, 2003.

J. M. Sogo, H. Stahl, T. Koller, and R. Knippers, Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures, J Mol Biol, vol.189, pp.189-204, 1986.

I. Lucas and O. Hyrien, Hemicatenanes form upon inhibition of DNA replication, Nucleic Acids Res, vol.28, pp.2187-2193, 2000.

M. Fernández-casañas and K. Chan, The Unresolved Problem of DNA Bridging, Genes (Basel), vol.9, p.623, 2018.

A. H. Bizard and I. D. Hickson, Anaphase: a fortune-teller of genomic instability, Curr Opin Cell Biol, vol.52, pp.112-119, 2018.

Y. Liu, C. F. Nielsen, Q. Yao, and I. D. Hickson, The origins and processing of ultra fine anaphase DNA bridges, Curr Opin Genet Dev, vol.26, pp.1-5, 2014.

P. Swuec and A. Costa, Molecular mechanism of double Holliday junction dissolution, Cell Biosci, vol.4, p.36, 2014.

A. H. Bizard and I. D. Hickson, The dissolution of double Holliday junctions, Cold Spring Harb Perspect Biol, vol.6, p.16477, 2014.

P. Cejka, J. L. Plank, C. Z. Bachrati, I. D. Hickson, and S. C. Kowalczykowski, Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3, Nat Struct Mol Biol, vol.17, pp.1377-1382, 2010.

J. L. Plank, J. Wu, and T. S. Hsieh, Topoisomerase IIIalpha and Bloom's helicase can resolve a mobile double Holliday junction substrate through convergent branch migration, Proc Natl Acad Sci U S A, vol.103, pp.11118-11123, 2006.

S. Raynard, W. Zhao, W. Bussen, L. Lu, Y. Ding et al., Functional role of BLAP75 in BLM-topoisomerase IIIalpha-dependent holliday junction processing, J Biol Chem, vol.283, pp.15701-15708, 2008.

L. Wu, C. Z. Bachrati, J. Ou, C. Xu, J. Yin et al., BLAP/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates, Proc Natl Acad Sci, vol.103, pp.4068-4073, 2006.

J. A. Kennedy, G. W. Daughdrill, and K. H. Schmidt, A transient ?-helical molecular recognition element in the disordered N-terminus of the Sgs1 helicase is critical for chromosome stability and binding of Top3/Rmi1, Nucleic Acids Res, vol.41, pp.10215-10227, 2013.

K. Chan, P. S. North, and I. D. Hickson, BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges, EMBO J, vol.26, pp.3397-3409, 2007.

K. Sarlós, A. S. Biebricher, A. H. Bizard, J. Bakx, A. G. Ferreté-bonastre et al., Reconstitution of anaphase DNA bridge recognition and disjunction, Nat Struct Mol Biol, vol.25, pp.868-876, 2018.

C. Gaillard and F. Strauss, DNA loops and semicatenated DNA junctions, BMC Biol, vol.1, p.1, 2000.

C. Gaillard and F. Strauss, High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops, BMC Mol Biol, vol.1, p.1, 2000.

S. Jaouen, L. De-koning, C. Gaillard, E. Muselíková-polanská, M. Stros et al., Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops, J Mol Biol, vol.353, pp.822-837, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00009564

C. Gaillard and F. Strauss, DNA topology and genome organization in higher eukaryotes: a model, J Theor Biol, vol.243, pp.604-607, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084385

C. Gaillard and F. Strauss, Construction of DNA Hemicatenanes from Two Small Circular DNA Molecules, PLoS One, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01078223

G. J. Knott, C. S. Bond, and A. H. Fox, The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold, Nucleic Acids Res, vol.44, pp.3989-4004, 2016.

F. Guillaumond, B. Boyer, D. Becquet, S. Guillen, L. Kuhn et al., Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00625435

A. A. Caudy, R. F. Ketting, S. M. Hammond, A. M. Denli, A. Bathoorn et al., A micrococcal nuclease homologue in RNAi effector complexes, Nature, vol.425, pp.411-414, 2003.

C. Li, Y. Shi, Z. Yuan, and H. S. , Tudor staphylococcal nuclease is a structure-specific ribonuclease that degrades RNA at unstructured regions during microRNA decay, RNA, vol.24, pp.739-748, 2018.

R. A. Elbarbary, K. Miyoshi, O. Hedaya, J. R. Myers, and L. E. Maquat, UPF1 helicase promotes TSN-mediated miRNA decay, Genes Dev, vol.31, pp.1483-1493, 2017.

X. Gao, L. Ge, J. Shao, C. Su, H. Zhao et al., Tudor-SN interacts with and co-localizes with G3BP in stress granules under stress conditions, FEBS Lett, vol.584, pp.3525-3532, 2010.

R. Weissbach and A. Scadden, Tudor-SN and ADAR1 are components of cytoplasmic stress granules, RNA, vol.18, pp.462-471, 2012.

D. Rajasekaran, N. Jariwala, R. G. Mendoza, C. L. Robertson, M. A. Akiel et al., Staphylococcal Nuclease and Tudor Domain Containing 1 (SND1 Protein) Promotes Hepatocarcinogenesis by Inhibiting Monoglyceride Lipase (MGLL), J Biol Chem, vol.291, pp.10736-10746, 2016.

L. Yu, X. Liu, K. Cui, Y. Di, L. Xin et al., SND1 Acts Downstream of TGF?1 and Upstream of Smurf1 to Promote Breast Cancer Metastasis, Cancer Res, vol.75, pp.1275-1286, 2015.

. Cc-by-nc-nd, International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint, 2019.