J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. Verspagen et al., Nat. Rev. Microbiol, vol.16, pp.471-483, 2018.

H. W. Paerl and T. G. Otten, Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls, Microb. Ecol, vol.65, pp.995-1010, 2013.

J. Leflaive and L. Ten-hage, Algal and Cyanobacterial Secondary Metabolites in Freshwaters: A Comparison of Allelopathic Compounds and Toxins, Freshw. Biol, vol.52, pp.199-214, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00275903

M. E. Van-apeldoorn, H. P. Van-egmond, G. J. Speijers, and G. J. Bakker, Toxins of Cyanobacteria, Mol. Nutr. Food Res, vol.51, pp.7-60, 2007.

N. M. Flores, T. R. Miller, and J. D. Stockwell, A Global Analysis of the Relationship between Concentrations of Microcystins in Water and Fish, Front. Mar. Sci, vol.5, p.30, 2018.

C. Malbrouck and P. Kestemont, Effects of Microcystins on Fish, Environ. Toxicol. Chem, vol.25, pp.72-86, 2006.

Q. Qiao, S. Le-manach, H. Huet, E. Duvernois-berthet, S. Chaouch et al., An Integrated Omic Analysis of Hepatic Alteration in Medaka Fish Chronically Exposed to Cyanotoxins with Possible Mechanisms of Reproductive Toxicity, Environ. Pollut, vol.219, pp.119-131, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01493865

M. J. Harke, M. M. Steffen, C. J. Gobler, T. G. Otten, S. W. Wilhelm et al., Genomics, and Biogeography of the Toxic Cyanobacterium, Microcystis Spp, vol.54, pp.4-20, 2016.

P. Wang, M. Chien, F. Wu, H. Chou, and S. Lee, Inhibition of Embryonic Development by Microcystin-LR in Zebrafish, Danio Rerio, Toxicon Off. J. Int. Soc. Toxinology, vol.45, pp.303-308, 2005.

L. Xie, P. Xie, L. Guo, L. Li, Y. Miyabara et al., Organ Distribution and Bioaccumulation of Microcystins in Freshwater Fish at Different Trophic Levels from the Eutrophic Lake Chaohu, China. Environ. Toxicol, vol.20, pp.293-300, 2005.

D. Zhang, P. Xie, Y. Liu, T. Qiu, and . Transfer, Distribution and Bioaccumulation of Microcystins in the Aquatic Food Web in Lake Taihu, China, with Potential Risks to Human Health, Sci. Total Environ, vol.407, pp.2191-2199, 2009.

S. Pavagadhi and R. Balasubramanian, Toxicological Evaluation of Microcystins in Aquatic Fish Species: Current Knowledge and Future Directions, Aquat. Toxicol. Amst. Neth, pp.1-16, 2013.

I. Trinchet, C. Djediat, H. Huet, S. P. Dao, and M. Edery, Pathological Modifications Following Sub-Chronic Exposure of Medaka Fish (Oryzias latipes) to Microcystin-LR, Reprod. Toxicol. Elmsford N, vol.32, pp.329-340, 2011.

L. Manach, S. Sotton, B. Huet, H. Duval, C. Paris et al., Physiological Effects Caused by Microcystin-Producing and Non-Microcystin Producing Microcystis Aeruginosa on Medaka Fish: A Proteomic and Metabolomic Study on Liver, Environ. Pollut. Barking Essex, vol.234, pp.523-537, 1987.
URL : https://hal.archives-ouvertes.fr/hal-02358315

S. R. Saraf, A. Frenkel, M. J. Harke, J. G. Jankowiak, C. J. Gobler et al., Effects of Microcystis on Development of Early Life Stage Japanese Medaka (Oryzias Latipes): Comparative Toxicity of Natural Blooms, Cultured Microcystis and Microcystin-LR, Aquat. Toxicol. Amst. Neth, vol.194, pp.18-26, 2018.

I. Zilber-rosenberg and E. Rosenberg, Role of Microorganisms in the Evolution of Animals and Plants: The Hologenome Theory of Evolution, FEMS Microbiol. Rev, vol.32, pp.723-735, 2008.

M. Mcfall-ngai, M. G. Hadfield, T. C. Bosch, H. V. Carey, T. Domazet-loso et al., Animals in a Bacterial World, a New Imperative for the Life Sciences, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.3229-3236, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00972300

M. S. Llewellyn, S. Boutin, S. H. Hoseinifar, N. T. Derome, and . Microbiomes, The State of the Art in Their Characterization, Manipulation and Importance in Aquaculture and Fisheries, Front. Microbiol, vol.5, p.207, 2014.

E. Macke, M. Callens, L. D. Meester, and E. Decaestecker, Host-Genotype Dependent Gut Microbiota Drives Zooplankton Tolerance to Toxic Cyanobacteria, Nat. Commun, vol.8, p.1608, 2017.

I. Chorus and J. Bartram, Toxic Cyanobacteria in Water : A Guide to Their Public Health Consequences, Monitoring and Management, 1999.

A. E. Parada, D. M. Needham, and J. A. Fuhrman, Every Base Matters: Assessing Small Subunit rRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. Environ. Microbiol, vol.18, pp.1403-1414, 2016.

T. Mago? and S. L. Salzberg, FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies, Bioinforma. Oxf. Engl, vol.27, pp.2957-2963, 2011.

M. Hall and R. G. Beiko, 16S RRNA Gene Analysis with QIIME2, Methods Mol. Biol. Clifton NJ, vol.1849, pp.113-129, 2018.

B. Callahan,

P. J. Mcmurdie and S. P. Holmes, Exact sequence variants should replace operational taxonomic units in marker-gene data analysis, vol.11, pp.2638-2643, 2017.

A. Amir, D. Mcdonald, J. A. Navas-molina, E. Kopylova, J. T. Morton et al., Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns, vol.2, pp.191-207, 2017.

R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, and R. Knight, UCHIME Improves Sensitivity and Speed of Chimera Detection, Bioinforma. Oxf. Engl, vol.27, pp.2194-2200, 2011.

C. Lozupone and R. Knight, UniFrac: A New Phylogenetic Method for Comparing Microbial Communities, Appl. Environ. Microbiol, vol.71, pp.8228-8235, 2005.

J. Oksanen, R. Kindt, P. Legendre, B. O'hara, M. H. Stevens et al., The Vegan Package. Community Ecol. Package, vol.1, pp.631-637, 2007.

L. Chen, Y. Hu, J. He, J. Chen, J. P. Giesy et al., Responses of the proteome and metabolome in livers of zebrafish exposed chronically to environmentally relevant concentrations of microcystin-LR, Environ. Sci. Technol, pp.596-607, 2017.

J. Hou, L. Li, N. Wu, Y. Su, W. Lin et al., Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: a life cycle assessment. Environ, pp.477-485

L. Manach, S. Khenfech, N. Huet, H. Qiao, Q. Duval et al., Gender-specific toxicological effects of chronic exposure to pure microcystin-LR or complex Microcystis aeruginosa extracts on adult medaka fish, Environ. Sci. Technol, vol.50, pp.8324-8334, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01493981

H. Liu, X. Guo, R. Gooneratne, R. Lai, C. Zeng et al., The Gut Microbiome and Degradation Enzyme Activity of Wild Freshwater Fishes Influenced by, Their Trophic Levels. Sci. Rep, vol.6, p.24340, 2016.

Q. Yan, J. Li, Y. Yu, J. Wang, Z. He et al., Environmental Filtering Decreases with Fish Development for the Assembly of Gut Microbiota, Environ. Microbiol, vol.18, pp.4739-4754, 2016.

I. De-bruijn, Y. Liu, G. F. Wiegertjes, and J. M. Raaijmakers, Exploring Fish Microbial Communities to Mitigate Emerging Diseases in Aquaculture, FEMS Microbiol. Ecol, vol.94, p.161, 2018.

C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, R. Knight et al., Stability and Resilience of the Human Gut Microbiota, Nature, vol.489, pp.220-230, 2012.

B. Star, T. H. Haverkamp, S. Jentoft, and K. S. Jakobsen, Next Generation Sequencing Shows High Variation of the Intestinal Microbial Species Composition in Atlantic Cod Caught at a Single Location, BMC Microbiol, p.248, 2013.

W. Z. Stephens, A. R. Burns, K. Stagaman, S. Wong, J. F. Rawls et al., The Composition of the Zebrafish Intestinal Microbial Community Varies across Development, Isme J, vol.10, pp.644-654, 2016.

C. Tsuchiya, T. Sakata, and H. Sugita, Novel Ecological Niche of Cetobacterium somerae, an Anaerobic Bacterium in the Intestinal Tracts of Freshwater Fish, Lett. Appl. Microbiol, vol.46, pp.43-48, 2008.

C. E. Givens, B. Ransom, N. Bano, and J. T. Hollibaugh, Comparison of the Gut Microbiomes of 12 Bony Fish and 3 Shark Species, Mar. Ecol. Prog. Ser, vol.518, pp.209-223, 2015.

L. Chen, J. C. Lam, C. Hu, M. M. Tsui, Q. Wang et al., Perfluorobutanesulfonate Exposure Causes Durable and Transgenerational Dysbiosis of Gut Microbiota in Marine Medaka, Environ. Sci. Technol. Lett, vol.5, pp.731-738, 2018.

B. S. Kim, J. W. Park, G. S. Kang, J. H. Jin, H. J. Roh et al., First Report of Nocardia Infection in Cultured Japanese Eel, Anguilla japonica, J. Fish Dis, vol.41, pp.1921-1927, 2018.

S. Subramanian, B. J. Campbell, and J. M. Rhodes, Bacteria in the Pathogenesis of Inflammatory Bowel Disease, Curr. Opin. Infect. Dis, vol.19, pp.475-484, 2006.

M. Fecteau, Paratuberculosis in Cattle, Vet. Clin. North Am. Food Anim. Pract, vol.34, pp.209-222, 2018.

G. Hoarau, P. K. Mukherjee, C. Gower-rousseau, C. Hager, J. Chandra et al., Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn's Disease, MBio, vol.7, pp.1250-1266, 2016.

S. Selber-hnatiw, B. Rukundo, M. Ahmadi, H. Akoubi, H. Al-bizri et al., Human Gut Microbiota: Toward an Ecology of Disease, Front. Microbiol, vol.8, p.1265, 2017.

F. Thomas, J. Hehemann, E. Rebuffet, M. Czjzek, and G. Michel, Environmental and Gut Bacteroidetes: The Food Connection, Front. Microbiol, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00925466

S. C. Michl, M. Beyer, J. Ratten, M. Hasler, J. Laroche et al., A Diet-Change Modulates the Previously Established Bacterial Gut Community in Juvenile Brown Trout (Salmo trutta), Sci. Rep, vol.9, p.2339, 2019.

H. Ishii, M. Nishijima, and T. Abe, Characterization of Degradation Process of Cyanobacterial Hepatotoxins by a Gram-Negative Aerobic Bacterium, Water Res, vol.38, pp.2667-2676, 2004.

B. Parveen, V. Ravet, C. Djediat, I. Mary, C. Quiblier et al., Bacterial Communities Associated with Microcystis Colonies Differ from Free-Living Communities Living in the Same Ecosystem, Environ. Microbiol. Rep, vol.5, pp.716-724, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00845941

J. Li, C. Chen, T. Zhang, W. Liu, L. Wang et al., µEvaluation of microcysti-LR absorbtion using and in vivo intestine model and its effect on zebrafish intestine, Aquat. Toxicol, vol.206, pp.186-194, 2019.

S. A. Shah, N. Akhter, B. N. Auckloo, I. Khan, Y. Lu et al., Structural Diversity, Biological Properties and Applications of Natural Products from Cyanobacteria. A Review. Mar. Drugs, p.354, 2017.