D. Chaves-moreira, A. Senff-ribeiro, A. C. Wille, L. H. Gremski, O. M. Chaim et al., Highlights in the knowledge of brown spider toxins, J. Venom. Anim. Toxins Incl. Trop. Dis, vol.23, issue.6, 2017.

F. A. Cordeiro, F. G. Amorim, F. A. Anjolette, and E. C. Arantes, Arachnids of medical importance in Brazil: Main active compounds present in scorpion and spider venoms and tick saliva, J. Venom. Anim. Toxins Incl. Trop. Dis, vol.21, 2015.

S. Ministério-da, Brasília: Brasil. Sistema de Informação de Agravos de Notificação SINAN, 2020.

D. L. Swanson, R. S. Vetter, and . Loxoscelism, Clin. Dermatol, vol.24, pp.213-221, 2006.

L. H. Gremski, D. Trevisan-silva, V. P. Ferrer, F. H. Matsubara, G. O. Meissner et al., Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins, Toxicon, vol.83, pp.91-120, 2014.

L. H. Gremski, H. C. Da-justa, T. P. Da-silva, N. L. Polli, B. C. Antunes et al., Forty years of the description of brown spider venom phospholipases-D, Toxins, vol.12, 2020.

A. C. Wille, D. Chaves-moreira, D. Trevisan-silva, M. G. Magnoni, M. Boia-ferreira et al., Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom, Toxicon, vol.67, pp.17-30, 2013.

E. Kalapothakis, S. C. Araujo, C. S. De-castro, T. M. Mendes, M. V. Gomez et al., Molecular cloning, expression and immunological properties of LiD1, a protein from the dermonecrotic family of Loxosceles intermedia spider venom, Toxicon, vol.40, pp.1691-1699, 2002.

M. D. Pedrosa, I. D. De-azevedo, R. M. Gonçalves-de-andrade, . Van-den, C. W. Berg et al., Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom, Biochem. Biophys. Res. Commun, vol.298, pp.638-645, 2002.

R. B. Da-silveira, R. B. Pigozzo, O. M. Chaim, M. H. Appel, J. L. Dreyfuss et al., Molecular cloning and functional characterization of two isoforms of dermonecrotic toxin from Loxosceles intermedia (brown spider) venom gland, Biochimie, vol.88, pp.1241-1253, 2006.

R. B. Da-silveira, R. B. Pigozzo, O. M. Chaim, M. H. Appel, D. T. Silva et al., Two novel dermonecrotic toxins LiRecDT4 and LiRecDT5 from brown spider (Loxosceles intermedia) venom: From cloning to functional characterization, Biochimie, vol.89, pp.289-300, 2007.

M. H. Appel, R. B. Da-silveira, O. M. Chaim, K. S. Paludo, D. T. Silva et al., Identification, cloning and functional characterization of a novel dermonecrotic toxin (phospholipase D) from brown spider (Loxosceles intermedia) venom, Biochim. Biophys. Acta, vol.1780, pp.167-178, 2008.

A. Ullah, P. O. De-giuseppe, M. T. Murakami, D. Trevisan-silva, A. C. Wille et al., Crystallization and preliminary X-ray diffraction analysis of a class II phospholipase D from Loxosceles intermedia venom, Acta Crystalogr. Sect. F Struct. Biol. Cryst. Commun, vol.67, pp.234-236, 2011.

C. J. Hogan, K. C. Barbaro, K. Winkel, and . Loxoscelism, Old obstacles, new directions, Ann. Emerg. Med, vol.44, pp.608-624, 2004.

G. K. Isbister and H. W. Fan, Spider bite, Lancet, vol.378, pp.2039-2047, 2011.

I. Pauli, J. C. Minozzo, P. H. Da-silva, O. M. Chaim, and S. S. Veiga, Analysis of therapeutic benefits of antivenin at different time intervals after experimental envenomation in rabbits by venom of the brown spider (Loxosceles intermedia), Toxicon, vol.53, pp.660-671, 2009.

P. Guilherme, I. Fernandes, and K. C. Barbaro, Neutralization of dermonecrotic and lethal activities and differences among 32-35 kDa toxins of medically important Loxosceles spider venoms in Brazil revealed by monoclonal antibodies, Toxicon, vol.39, pp.1333-1342, 2001.

J. S. Ramada, A. Becker-finco, J. C. Minozzo, L. F. Felicori, R. A. Machado-de-avila et al., Synthetic peptides for in vitro evaluation of the neutralizing potency of Loxosceles antivenoms, Toxicon, vol.73, pp.47-55, 2013.

A. H. Laustsen, M. Solà, E. C. Jappe, S. Oscoz, L. P. Lauridsen et al., Biotechnological trends in spider and scorpion antivenom development, Toxins, vol.8, p.226, 2016.

L. M. Alvarenga, M. S. Martins, J. F. Moura, E. Kalapothakis, J. C. Oliveira et al., Production of monoclonal antibodies capable of neutralizing dermonecrotic activity of Loxosceles intermedia spider venom and their use in a specific immunometric assay, Toxicon, vol.42, pp.725-731, 2003.

C. Dias-lopes, L. Felicori, L. Rubrecht, S. Cobo, L. Molina et al., Chávez-Olortegui, C. Generation and molecular characterization of a monoclonal antibody reactive with conserved epitope in sphingomyelinases D from Loxosceles spider venoms, vol.32, pp.2086-2092, 2014.

S. Karim-silva, J. De-moura, M. Noiray, J. C. Minozzo, N. Aubrey et al., Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism, Immunol. Lett, vol.176, pp.90-96, 2016.

F. A. Harding, M. M. Stickler, J. Razo, and R. B. Dubridge, The immunogenicity of humanized and fully human antibodies, MAbs, vol.2, pp.256-265, 2010.

N. Aubrey and P. Billiald, Antibody fragments humanization: Beginning with the end in mind, Methods Mol. Biol, pp.231-252, 1904.

K. R. Abhinandan and A. C. Martin, Analysis and prediction of VH/VL packing in antibodies, Protein Eng. Des. Sel, vol.23, pp.689-697, 2010.

S. H. Gao, K. Huang, H. Tu, and A. S. Adler, Monoclonal antibody humanness score and its applications, Bmc Biotechnol, vol.13, 2013.

Z. Lakhrif, M. Pugnière, C. Henriquet, A. Di-tommaso, I. Dimier-poisson et al., A method to confer Protein L binding ability to any antibody fragment, MAbs, vol.8, pp.379-388, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02297085

M. T. Murakami, M. F. Fernandes-pedrosa, D. V. Tambourgi, and R. K. Arni, Structural basis for metal ion coordination and the catalytic mechanism of sphingomyelinases D, J. Biol. Chem, vol.280, pp.13658-13664, 2005.

L. Vuitika, D. Chaves-moreira, I. Caruso, M. A. Lima, F. H. Matsubara et al., Active site mapping of Loxosceles phospholipases D: Biochemical and biological features, Biochim. Biophys. Acta, vol.1861, pp.970-979, 2016.

R. L. Fogaça, L. M. Alvarenga, T. D. Woiski, A. Becker-finco, K. N. Teixeira et al., Biomolecular engineering of antidehydroepiandrosterone antibodies: A new perspective in cancer diagnosis and treatment using single-chain antibody variable fragment, Nanomedicine, vol.14, pp.689-705, 2019.

P. H. Lopes, M. T. Murakami, F. C. Portaro, K. F. Mesquita-pasqualoto, . Van-den et al., Targeting Loxosceles spider Sphingomyelinase D with small-molecule inhibitors as a potential therapeutic approach for loxoscelism, J. Enzym. Inhib. Med. Chem, vol.34, pp.310-321, 2019.

D. M. De-almeida, M. F. De-fernandes-pedrosa, R. M. De-andrade, J. R. Marcelino, H. Gondo-higashi et al., A new anti-loxoscelic serum produced against recombinant sphingomyelinase D: Results of preclinical trials, Am. J. Trop. Med. Hyg, vol.79, pp.463-470, 2008.

C. G. Duarte, C. Bonilla, G. Guimarães, R. A. Machado-de-avila, T. M. Mendes et al., Anti-loxoscelic horse serum produced against a recombinant dermonecrotic protein of Brazilian Loxosceles intermedia spider neutralize lethal effects of Loxosceles laeta venom from Peru, Toxicon, vol.93, pp.37-40, 2015.

L. Felicori, P. B. Fernandes, M. S. Giusta, C. G. Duarte, E. Kalapothakis et al., An in vivo protective response against toxic effects of the dermonecrotic protein from Loxosceles intermedia spider venom elicited by synthetic epitopes, vol.27, pp.4201-4208, 2009.

C. Dias-lopes, G. Guimarães, L. Felicori, P. Fernandes, L. Emery et al., A protective immune response against lethal, dermonecrotic and hemorrhagic effects of Loxosceles intermedia venom elicited by a 27-residue peptide, Toxicon, vol.55, pp.481-487, 2010.

L. F. Figueiredo, C. Dias-lopes, L. M. Alvarenga, T. M. Mendes, R. A. Machado-de-Ávila et al., Innovative immunization protocols using chimeric recombinant protein for the production of polyspecific loxoscelic antivenom in horses, Toxicon, vol.86, pp.59-67, 2014.

A. Lima-s-de, C. Guerra-duarte, F. Costal-oliveira, T. M. Mendes, L. F. Figueiredo et al., Recombinant protein containing B-cell epitopes of different Loxosceles spider toxins generates neutralizing antibodies in immunized rabbits, Front. Immunol, vol.9, p.653, 2018.

Y. Safdari, S. Farajnia, M. Asgharzadeh, and M. Khalili, Antibody humanization methods-A review and update, Biotechnol. Genet. Eng. Rev, vol.29, pp.175-186, 2013.

K. Lebozec, M. Jandrot-perrus, G. Avenard, O. Favre-bulle, and P. Billiald, Design, development and characterization of ACT017, a humanized Fab that blocks platelet's glycoprotein VI function without causing bleeding risks, MAbs, vol.9, pp.945-958, 2017.

K. Lebozec, M. Jandrot-perrus, G. Avenard, O. Favre-bulle, and P. Billiald, Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development, N. Biotechnol, vol.44, pp.31-40, 2018.

M. Dondelinger, P. Filée, E. Sauvage, B. Quinting, S. Muyldermans et al., Understanding the significance and implications of antibody numbering and antigen-binding surface/residue definition, Front. Immunol, vol.9, 2018.

H. Waldmann, Human monoclonal antibodies: The benefits of humanization, Methods Mol. Biol, pp.1-10, 1904.

E. Doevendans and H. Schellekens, Immunogenicity of innovative and biosimilar monoclonal antibodies, vol.8, 2019.

E. M. Moussa, J. P. Panchal, B. S. Moorthy, J. S. Blum, M. K. Joubert et al., Immunogenicity of therapeutic protein aggregates, J. Pharm. Sci, vol.105, pp.417-430, 2016.

R. Van-der-kant, A. R. Karow-zwick, J. Van-durme, M. Blech, R. Gallardo et al., Prediction and reduction of the aggregation of monoclonal antibodies, J. Mol. Biol, vol.429, pp.1244-1261, 2017.

H. Morgan, S. Tseng, Y. Gallais, M. Leineweber, P. Buchmann et al., Evaluation of in vitro assays to assess the modulation of dendritic cells functions by therapeutic antibodies and aggregates, Front. Immunol, vol.10, 2019.

M. Jerabek-willemsen, C. J. Wienken, D. Braun, P. Baaske, and S. Duhr, Molecular interaction studies using microscale thermophoresis, Assay Drug Dev. Technol, vol.9, pp.342-353, 2011.

M. A. Coronado, A. Ullah, L. S. Da-silva, D. Chaves-moreira, L. Vuitika et al., Structural insights into substrate binding of brown spider venom class II phospholipases, D. Curr. Protein Pept. Sci, vol.16, pp.768-774, 2015.

D. M. Lajoie, S. A. Roberts, P. A. Zobel-thropp, J. L. Delahaye, V. Bandarian et al., Variable substrate preference among phospholipase D toxins from Sicariid spiders, J. Biol. Chem, vol.290, pp.10994-11007, 2015.

C. Dias-lopes, I. A. Neshich, G. Neshich, J. M. Ortega, C. Granier et al., Identification of new sphingomyelinases D in pathogenic fungi and other pathogenic organisms, PLoS ONE, vol.8, 2013.

P. O. De-giuseppe, A. Ullah, D. T. Silva, L. H. Gremski, A. C. Wille et al., Structure of a novel class II phospholipase D: Catalytic cleft is modified by a disulphide bridge, Biochem. Biophys. Res. Commun, vol.409, pp.622-627, 2011.

D. V. Tambourgi, R. M. Gonçalves-de-andrade, . Van-den, C. W. Berg, and . Loxoscelism, From basic research to the proposal of new therapies, Toxicon, vol.56, pp.1113-1119, 2010.

L. Felicori, S. C. Araujo, R. A. De-avila, E. F. Sanchez, C. Granier et al., Functional characterization and epitope analysis of a recombinant dermonecrotic protein from Loxosceles intermedia spider, Toxicon, vol.48, pp.509-519, 2006.

T. M. Mendes, D. Oliveira, L. F. Figueiredo, R. A. Machado-de-avila, C. G. Duarte et al., Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom, vol.31, pp.2749-2755, 2013.

L. H. Gremski, R. B. Da-silveira, O. M. Chaim, C. M. Probst, V. P. Ferrer et al., A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis, Mol. Biosyst, vol.6, pp.2403-2416, 2010.

J. De-moura, L. Felicori, V. Moreau, G. Guimarães, C. Dias-lopes et al., Protection against the toxic effects of Loxosceles intermedia spider venom elicited by mimotope peptides, vol.29, pp.7992-8001, 2011.

A. H. Laustsen, J. María-gutiérrez, C. Knudsen, K. H. Johansen, E. Bermúdez-méndez et al., Pros and cons of different therapeutic antibody formats for recombinant antivenom development, Toxicon, vol.146, pp.151-175, 2018.

M. Engmark, M. R. Andersen, A. H. Laustsen, J. Patel, E. Sullivan et al., High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

M. Engmark, B. Lomonte, J. M. Gutiérrez, A. H. Laustsen, F. De-masi et al., Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping, Plos Negl. Trop. Dis, vol.11, 2017.

D. Röthlisberger, A. Honegger, and A. Plückthun, Domain interactions in the Fab fragment: A comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability, J. Mol. Biol, vol.347, pp.773-789, 2005.

D. Chaves-moreira, O. M. Chaim, Y. B. Sade, K. S. Paludo, L. H. Gremski et al., Identification of a direct hemolytic effect dependent on the catalytic activity induced by phospholipase-D (dermonecrotic toxin) from brown spider venom, J. Cell Biochem, vol.107, pp.655-666, 2009.

D. V. Tambourgi, D. Paixão-cavalcante, R. M. Gonçalves-de-andrade, M. F. De-fernandes-pedrosa, F. C. Magnoli et al., Loxosceles sphingomyelinase induces complement-dependent dermonecrosis, neutrophil infiltration, and endogenous gelatinase expression, J. Investig. Dermatol, vol.124, pp.725-731, 2005.

D. Manzoni-de-almeida, C. C. Squaiella-baptistão, P. H. Lopes, . Van-den, C. W. Berg et al., Loxosceles venom Sphingomyelinase D activates human blood leukocytes: Role of the complement system, Mol. Immunol, vol.94, pp.45-53, 2018.

V. Quintero-hernández, L. Del-pozo-yauner, M. Pedraza-escalona, V. R. Juárez-gonzález, I. Alcántara-recillas et al., Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: Neutralization capacity versus thermodynamic stability, Immunol. Lett, vol.143, pp.152-160, 2012.

C. Voors-pette, K. Lebozec, P. Dogterom, L. Jullien, P. Billiald et al., Safety and tolerability, pharmacokinetics, and pharmacodynamics of ACT017, an antiplatelet GPVI (glycoprotein VI) Fab: First-in-human healthy volunteer trial, vol.39, pp.956-964, 2019.

V. Quintero-hernández, V. R. Juárez-gonzález, M. Ortíz-león, R. Sánchez, L. D. Possani et al., The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies, Mol. Immunol, vol.44, pp.1307-1315, 2007.

P. B. Lawrence and J. L. Price, How PEGylation influences protein conformational stability, Curr. Opin. Chem. Biol, vol.34, pp.88-94, 2016.

R. D. Appel, A. Bairoch, and D. F. Hochstrasser, A new generation of information retrieval tools for biologists: The example of the ExPASy WWW server, Trends Biochem. Sci, vol.19, pp.258-260, 1994.

I. Jiacomini, S. K. Silva, N. Aubrey, J. Muzard, C. Chavez-olortegui et al., Immunodetection of the "brown" spider (Loxosceles intermedia) dermonecrotoxin with an scFv-alkaline phosphatase fusion protein, Immunol. Lett, vol.173, pp.1-6, 2016.

A. Honegger and A. Plückthun, Yet another numbering scheme for immunoglobulin variable domains: An automatic modeling and analysis tool, J. Mol. Biol, vol.309, pp.657-670, 2001.

K. R. Abhinandan and A. C. Martin, Analyzing the "degree of humanness" of antibody sequences, J. Mol. Biol, vol.369, pp.852-862, 2007.

J. Muzard, S. Adi-bessalem, M. Juste, F. Laraba-djebari, N. Aubrey et al., Grafting of protein L-binding activity onto recombinant antibody fragments, Anal. Biochem, vol.388, pp.331-338, 2009.

F. Ehrenmann, M. Lefranc, ;. Imgt/domaingapalign, . Ig, . Tr et al., IMGT standardized analysis of amino acid sequences of variable, constant, and groove domains, Cold Spring Harb. Protoc, pp.737-749, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00616462

E. S. Ward, D. Güssow, A. D. Griffiths, P. T. Jones, and G. Winter, Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli, Nature, vol.341, pp.544-546, 1989.

C. Devaux, E. Moreau, M. Goyffon, H. Rochat, and P. Billiald, Construction and functional evaluation of a single-chain antibody fragment that neutralizes toxin AahI from the venom of the scorpion Androctonus australis hector, Eur. J. Biochem, vol.268, pp.694-702, 2001.

A. Sali and J. P. Overington, Derivation of rules for comparative protein modeling from a database of protein structure alignments, Protein Sci, vol.3, pp.1582-1596, 1994.

S. F. Altschul and D. J. Lipman, Protein database searches for multiple alignments, Proc. Natl. Acad. Sci, vol.87, pp.5509-5513, 1990.

M. Luiz, S. Pereira, N. Prado, N. Gonçalves, A. Kayano et al., Camelid single-domain antibodies (VHHs) against crotoxin: A basis for developing modular building blocks for the enhancement of treatment or diagnosis of crotalic envenoming, Toxins, vol.10, p.142, 2018.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera-A visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

D. Kozakov, D. R. Hall, B. Xia, K. A. Porter, D. Padhorny et al., The ClusPro web server for protein-protein docking, Nat. Protoc, vol.12, pp.255-278, 2017.

R. Brenke, D. R. Hall, G. Chuang, S. R. Comeau, T. Bohnuud et al., Application of asymmetric statistical potentials to antibody-protein docking, Bioinformatics, vol.28, pp.2608-2614, 2012.

R. A. Laskowski, J. D. Watson, and J. M. Thornton, Protein function prediction using local 3D templates, J. Mol. Biol, vol.351, pp.614-626, 2005.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI