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Abstract

In the past decades, the concept of Icacinaceae has been refined greatly, as morphological and
molecular data have led to a narrower circumscription of a monophyletic Icacinaceae family
with only 23 genera (vs 58 sensu Sleumer, 1942). This family possesses an extensive fossil
record, important to the biogeographic history of the Northern Hemisphere, but the reported
fossils need to be carefully evaluated in the current phylogenetic framework. We evaluated
183 fossil reports of Icacinaceae from the literature but considered only 92 as reliably
belonging to this family. Most of the accepted records are from endocarp remains. With this
sampling, we show an increase of the species richness during the Paleocene. A great increase
of diversity in terms of genera, species, and morphological range is shown through the
Paleocene-Eocene interval and during the Early Eocene (Ypresian). Exchanges occurred
between North America and Europe near the PETM in both directions. During the middle and
late Eocene, several of the modern genera appear first in the fossil record such as Natsiatum,
Phytocrene, and Pyrenacantha. Decreased diversity of post-Eocene records might be
explained by cooling during and subsequent to the Oligocene, which was less favourable to
climbers. We observe the same pattern in other megathermal families showing the global
dynamic of megathermal groups of the North Hemisphere forest (boreotropical sensu. Wolfe,

1975) during the Paleogene.

Keywords: Icacinaceae, endocarp, leaves, pollen, biogeography, palaeobotany
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1. Introduction

In the past decades, the concept of Icacinaceae has been revised considerably with the
results of new molecular and morphological data that show that the former Icacinaceae family
concept with about 400 species and 58 genera (from Sleumer, 1942) was polyphyletic
(Karehed, 2001). That phylogenetic study defined the Icacinaceae s.s. as belonging to the
Garryales order and placed some genera in the Aquifoliales and Apiales orders. In particular,
Karehed described a new family, Stemonuraceae, and added some species to the
Cardiopteridaceae family. The resulting circumscription of Icacinaceae included only 36
genera divided in four informal groups: Icacina, Cassinopsis, Emmotum, and Apodytes.
Later, another study showed that this new circumscription of Icacinaceae corresponds to a
basal lamiid group (Lens et al., 2008). According to Lens et al. (2008), the Icacinaceae have
simple perforation plates in vessels (except for Cassinopsis), which is not the case for other
excluded former Icacinaceae. However, the Icacinaceae (sensu Lens et al., 2008) was still
considered as a polyphyletic group (Byng et al., 2014). More recently, a new Icacinaceae s.s.
family was delimited with only the Icacina group sensu Karehed (2001) accepted, using a new
molecular data set (Stull et al., 2015). Icacinaceae s.s. (sensu Stull et al. 2015) contains only
23 genera, with about 160 species, and is a basal lamiid group close to the Oncothecaceae
family. Both families are in the newly defined Icacinales order. Those taxonomic assignments
are accepted and used in the APG IV (APG, 2016). Thus, the Icacinaceae family s.1. belongs
now to four indirectly related orders in Asterids group (Fig.1).

This family possesses an extensive fossil record that extends geographically and
geologically. The record is mainly composed of endocarps (e.g., Reid and Chandler, 1933;
Manchester, 1994; Collinson et al., 2012) but there are also reports of wood (e.g., Greguss,

1969), pollen (e.g., Kedves, 1970; Krutzsch & Vanhoorne, 1977; Cavagnetto, 2000), a flower
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(Del Rio et al., 2017) and leaf remains (e.g., Wolfe, 1977; Tanai, 1990). However, most of the
paleobotanical discoveries and descriptions on Icacinaceae family were made before the
twenty first century. Therefore, assignments to Icacinaceae were done before the recent
modifications of the phylogenetic framework and some characters used to define Icacinaceae
can be in fact been simply apomorphic for Asterids (Fig. 1).

Some fossil species (e.g., Icacinoxylon alternipuncata, Icacinicarya papillaris, and
lodes germanica), were used to calibrate an angiosperm phylogeny (Magallén et al., 2015). In
addition, the Icacinaceae fossil remains have been used as a paleoclimatic clue and
contributed to the characterization of the Boreotropical forest definition, a vegetation type that
was widespread across middle latitudes in Northern Hemisphere during the Eocene (Wolfe,
1975). The Icacinaceae fossils also played an important role in the understanding of the
dispersion between Europe and North America during the early-middle Eocene (Manchester,
1994; Stull et al., 2011; Allen et al., 2015). Thus, it is crucial to evaluate the Icacinaceae fossil
record within a phylogenetic framework. Two reviews of the fossil record including the
asteridae were made (Martinez-Millan, 2010; Manchester, 2015), highlighting a Maastrichtian
minimum age for the Icacinaceae family. However, neither of these reviews embraces all the
Icacinaceae fossils described until now.

In this study, we reviewed previously published reports of fossils attributed to the
Icacinaceae. Our main questions are: (1) what is the fossil diversity of Icacinaceae s.s.
following the new circumscription of the family and (2) what is the paleogeography and

biogeographic history of this family based on this new circumscription?

2. Material and methods
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We compiled all the occurrences of Icacinaceae in the literature to the extent of our
knowledge (Table 1.). The fossil record depends on available outcrops, search efforts, and
findings. Here we took into consideration a majority of species from North America and
Europe. This distribution is probably due to a more thorough search effort in this area than
others in palacobotanical history (Morley & Dick, 2003). Indeed, Icacinaceae fossils were
recently found from Paleocene-Miocene range in South America (Stull et al., 2012). The
palaeobotanical studies of South-America have been increased during the last ten years
(Herrera et al., 2011, 2014; Jud et al., 2016; Pérez-Consuegra et al., 2017, 2018), and reveal a
new diversity and new biogeographical hypotheses, including for Icacinaceae. We tabulated
183 fossil occurrences according to the age, locality, country and the concerned organs,
among them 105 (81 species) were represented by fossil of endocarps divided in 12 fossil
genera: Comicilabium, Croomiocarpum, Faboidea, Hosiea, Icacinicarya, Icacinicaryites,
lodicarpa, Palaeohosiea, Palaeophytocrene, Perforatocarpum, Sphaeriodes and Stizocarya
and four modern genera: lodes, Natsiatum, Phytocrene and Pyrenacantha. Only one flower
has been described for this family, the extinct genus Icacinanthium. We also compiled 13 leaf
occurrences (10 species), five of them being from two extinct genera: Goweria and
Huziokaeae and four of them from two extant genera: Merrilliodendron and Phytocrene. The
pollen record includes 26 occurrences (seven species) in two fossil genera,
Compositoipollenites and Echiperiporites, and only an extant ones lodes. Finally, we
recorded 38 occurrences (14 species) of fossil wood records, with two fossil genera,
Icacinoxylon and Apodytoxylon. The dominance in the fossil record of climbing genera, well
represented close to rivers, could be a taphonomic bias (Burnham, 1989; Burnham et al.,
1992). However, because the climbing genera are well distributed in the family, we consider

our sample as representative of the entire family.
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We decided to accept or reject occurrences based on the initial description and the
associated figures in the literature. We checked all occurrences in accordance with new
taxonomic and phylogenetic data (Stull et al. 2015). The Icacinaceae s.l. now belongs to four
order in Asterids (Fig. 1), and thus some Icacinaceae characters used as criteria of fossil
recognition (e.g., wood anatomy, leaves characters) cannot be longer used. We resumed the
genera taxonomic changes and the associated fossil record in the Appendix 1.

We propose a reconstruction of the paleogeography of the Icacinaceae s.s. (Fig. 2) using
paleomap made by Boucot et al. (2013). In this reconstruction (Fig. 2), the rejected
occurrences are excluded (considered as definitively not Icacinaceae or without certainty in
age of the outcrops) whereas the dubious occurrences are presented in grey (considered as
potential Icacinaceae, but without certainty). Accepted occurrences are in red (Fig. 2).

We used paleoclimatic reconstruction based on lithologic indicators in order to give a
brief and global idea of the link between past climate and Icacinaceae distribution (Boucot et
al., 2013). This climatic ancestral reconstruction was based on the presence of lithological
remains: Coal, Bauxite and Laterite indicate a warm and wet climate (assumed as tropical),
the Coal and Tillites together indicate a cold and wet climate (cool temperate), the presence of
Evaporite and Calcrete indicates a warm and dry climate (arid), The tillite associated with
Dropstone and Glendonite indicate a dry and cool climate (cold) and the presence of
Kaolinite, Crocodiles remains, palms and mangroves indicate a warm temperate climate. For
more clarity, the position of the different rocks samples was removed and we only kept the
climatic area reconstructions. The complete lithological data can be found in the following
website: scotese.com/climate.htm. Despite more recent alternative data on reconstruction of
biomes for parts of the world (e.g., South America, Jaramillo and Cardenas, 2013), we

decided to keep this global view as a good proxy for our study.



136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

3. Results

3.1 Species and occurrences rejected or dubious

The endocarp record is the most meaningful for the Icacinaceae family, and probably
the most reliable. However, some occurrences need to be revisited.

Comicilabium atkinsii was considered as belonging to Icacinaceae by its unilocular
endocarp, the vascular bundle on only one side and the cellular structure of the endocarp wall
(Manchester, 1994). The endocarp apical structure is a bulge with a lip. The size of the
endocarp and the wall thickness (2—4 mm) are surprising for a supposed Icacinaceae
compared with modern species endocarps (Del Rio, 2018). Despite the fact that the wall
anatomy, including interlocking digitate sclereids composing the endocarp and papillate
locule lining, is a convincing argument for the proposed affinity, we decided to consider this
species as dubious in order to consider the extreme differences in endocarp morphology.

Icacinicarya mucronata, Icacinicarya bognorensis, Icacinicarya rotundata, and
Icacinicarya sp.11 are considered as dubious in a recent revision of the London Clay fossils
(Stull et al., 2016), because of the lack of some characteristic features and the bad
preservation of the specimens. We also followed this opinion here. Icacinicarya foveolata was
considered as a non-member of the Icacinaceae family in the same study because of the
presence of large hexagonal secretory cells lining the outside part of the seed and the thicker
endocarp wall. In the absence of alternative identification and another argument, we consider
that at least the characters given by Reid and Chandler (1933); i.e. endocarp unilocular and
wall composed with partial digitate cells, are sufficient to not totally reject the potential

affinity with Icacinaceae family, so we consider it as dubious.



158 Icacinicarya amygdaloidea was considered as a member of Icacinaceae because of the
159  shape, the position of the vascular bundle and the stylar canal (Chandler, 1961b). However,
160  the specimens are smooth, which is uncommon within the Icacinaceae family (Del Rio,

161 2018). This trait is occasionally found in Casimirella, Mappia and especially in Sarcostigma.
162 Additionally, the wall is composed of non-digitate cells, 10-12 um in diameter. This kind of
163 cells are never found in extant Icacinaceae (Del Rio 2018). Consequently, we rejected this
164  species in our study.

165 Icacinicarya budvarensis from the Santonian of Germany (Knobloch & Mai, 1986)
166  has a nodulose ornamentation, not common in the modern Icacinaceae family, and a shape
167  also not found in extant species of Icacinaceae (Del Rio, 2018). Moreover, the description
168  lacks the inner endocarp and the wall are partially not described. Therefore, we choose to
169  consider this species as rejected.

170 Icacinicarya papillaris (Knobloch & Mai, 1986) resembles much more to an

171 Icacinaceae especially belonging to lodes, but the preservation seems to be insufficient to
172 assign this species to a particular genus. We consider this species as dubious because of the
173 rough ornamentation and the absence of the papillae on the inner endocarp surface.

174 According to its original description, lodes germanica, from the Maastrichtian of

175  Germany, have all the diagnostic characters of lodes (reticulate ornamentation, papillae on the
176  inner surface, vascular bundle in one side on the endocarp wall; Knobloch & Mai, 1986).

177  Despite the lack of revision and a good illustration (Manchester, 2015), we decided to accept
178  this last species as Icacinaceae member, based on the initial quite complete description.

179 Icacinicarya sp. (Chester, 1955) is rejected for this paleogeographical reconstruction
180  because of the doubtful age of the Nigeria outcrops. Chester writes “Maastrichtian?” for this

181  specimen. Considering the importance of species from Cretaceous in paleogeographical
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reconstructions, we decided to not take the risk to include this specimen, not formerly
described as a species by the author.

Icacinicarytes corruga (Pigg et al., 2008) lacks anatomical details and is based on a
single unusually large specimen (38 mm x 28 mm). In addition, the morphology of this
specimen seems to be difficult to interpret, in particular the ornamentation different from
extant Icacinaceae. We consider it as dubious.

Icacinicaryites israelii from the Early Maastrichtian of Israel was a controversial
species. Some authors disputed the attribution of this specimen to lodes (Stull et al., 2016;
Del Rio et al., 2019a). In fact, this specimen lacks the anatomical detail needed to assign it.
The potential inner cotyledon discussed in the original article (Soudry & Gregor, 1997;
figures 4, 8, 9) seems to be an artefact. The specimen on which this species is based is
bilateral, slightly compressed laterally, asymmetrical at the apex and reticulate on the surface.
All these characters could support an Icacinaceae assignment. However, the reticulation
pattern seems to be very orderly compared to Icacinaceae that have a more randomly arranged
reticulation (Del Rio, 2018). The lack of anatomical detail on the wall and locules
(Unilocular? Anatropous?) led us to consider this species as very questionable.

Phytocrene microcarpa of Scott & Barghoorn 1957 is rejected by some authors (Stull
et al., 2012; Manchester et al., 2015). This species shows an anatomy that cannot match with
the Icacinaceae family (Manchester et al., 2015). Also, the shape and the size of the endocarp
do not match with this assignment. For this reason, we consider it as rejected.

cf. Natsiatum wilkoxiana from the Eocene of the Tallahatta Formation (Blanchard et
al., 2016) shows very few morphological clues and no anatomical characters. We cannot
exclude that this specimen corresponds to Icacinaceae, because of the ridge structures
described by the author. However, without enough diagnostic characters, we consider it as

dubious.
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Some occurrences have been excluded from this study: an lodes from the Miocene of
Yunnan (China) was mentioned by Stull et al. (2014) but not formerly published; one of us
(DDF) could observe another lodes species from the Miocene of Turkey, but could not study
it in detail and the specimen is no longer accessible for study.

The leaves of modern Icacinaceae s.s. are in general simple, entire, mainly pinnatifid
with brochidodromous secondary venation and percurrent tertiary venation (Sleumer, 1971;
Villiers, 1973; Utteridge et al., 2007; Allen et al., 2015; and personal observation). There are
some notable exceptions: leaves from Hosiea and Natsiatum are toothed with
craspedodromous secondary veins; some Phytocrene and Pyrenacantha species have palmate
primary veins (Phytocrene borneensis, P. bracteata, P. palmata, P. hirsuta, Pyrenacantha
malvifolia). Tertiary veins are occasionally more reticulate as some species in Casimirella,
Desmostachys, Miquelia, Pyrenacantha, and Stachyanthus in general. These examples show
the great variation in leaf architecture in the family Icacinaceae but also the limited variation
in the majority of species. Nevertheless, the classical type of leaves for Icacinaceae family is
common in tropical flowering plants, at least for the entire leaves’ trait (Bailey & Sinnott,
1916; Wolfe, 1985). Thus, the leaves of this family lack diagnostic characters. While fossil
leaves might appear identical in venation to modern leaves in the Icacinaceae, the fact that
overlapping venation occurs in other families means that we cannot be fully confident in the
identification of fossil leaves in this family. This probably explains the poor record of fossil
leaves attributed to this family (only 13 occurrences). We choose to consider the leaves as
dubious if no clear diagnostic characters are given.

The genus Goweria, attributed to Icacinaceae by Wolfe (1977) and primarily to
Menispermaceae (Wolfe, 1968), accommodates oval to lanceolate leaves with palmate
primarily venation (in fact pinnatifid, see discussion in Allen et al., 2015), five primaries,

brochydodromous secondary venation and percurrent tertiary veins. This diagnosis could
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correspond to Icacinaceae family but not exclusively. Indeed, we found a similar type of
leaves for at least the Metteniusaceae family (Fig. 1) in some genera previously considered as
Icacinaceae (Emmotum, Dendrobangia, Platea, Apodytes, Pittosporopsis, personal
observation). We decided to consider all Goweria species as dubious. Goweria linearis, in
particular, seems to be very ambiguous (Wolfe, 1968). Actually, the specimen has a strongly
asymmetrical apex, which is uncommon in Icacinaceae species. In our opinion, Goweria
bluerimensis is the most convincing assignment (Allen et al., 2015). These specimens possess
expanded petioles with a narrow, resistant vascular strand that could be a diagnostic character.

Huziokaea eoutilus partially resembles Icacinaceae, but is closer to Gomphandra
(Tanai, 1990), which is currently in Stemonuraceae (Karehed, 2001). The assignment of this
extinct genus to Icacinaceae s.s is here considered as wrong.

Merrilliodendron ezoanum identification seems to be based on traits (wide-elliptic
shape, intercostal tertiary veins, diverging perpendicular from the midvein), now shared by
several families including Icacinaceae and Stemonuraceae (Tanai, 1990); we consider it as
dubious.

The fossil record for Phytocrene leaves is composed of three species. However,
Phytocrene acutissima from Eocene of Alaska corresponds to a partial fossil leaf (Wolfe,
1977; pl. 12, 1-6). Phytocrene sordida from Eocene of USA seems to be more convincing
(MacGinitie, 1941), but the main traits correspond to the common characters discussed above
for Goweria. The author of this species notes the similarity between the fossil species and
modern Phytocrene blancoi and Hyperbaena hondurensis (Menispermaceae), showing the
ambiguity of the determination at the family level. Finally, Phytocrene ozakii from the
Eocene of Japan is based on a partial fossil (Tanai, 1990; pl. 6) and no diagnostic characters

were clearly used.



256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Both descriptions of Pyrenacantha sp. from Alaska and Japan (Wolfe, 1977; Tanai,
1990) are based on fragmentary material. They have mainly in common a pinnate venation
and a weak pair of basal secondary venes that form marginal loops whose apical sides are
oriented basally. This shape seems to appear many times in Asterids (e.g., Stemonuraceae,
Lasianthera) and thus we consider these occurrences as dubious.

The genus Icaciniphyllum (not shown in Table 1.) was described for simple leaves,
with a non-entire margin (undulate, crenulate, and irregularly dentate) and with
craspedodromous venation (Kvacek & Buzek, 1995). These characteristics are rare in
Icacinaceae. In fact, only Hosiea and Natsiatum could roughly correspond to this description,
but the non-entire margin is very different. Other genera (e.g., lodes, Pyrenacantha...) have
entire margins and brochidodromous venation. Indeed, the type species Icaciniphyllum
artocarpites (Ettingshausen) Kvacek & Buzek is now considered as a member of Sloanea L.,
(Elaeocarpaceae), which invalidates the previous assignment (Kvacek et al., 2001; Allen et
al., 2015). Thus, the affinity is probably wrong for all the species attributed to the genus.

To sum up, all fossil leaves are considered as dubious or as rejected for our
paleogeographical reconstruction. We are convinced that some occurrences (e.g., Goweria
bluerimensis) are adequately documented; however, we show that the main traits of leaves
correspond mostly to the Icacinaceae s.l. are now shared by some more or less closely related
families.

The fossil record of potential icacinaceous pollen is poor in term of species diversity
but rich in occurrences, especially in Europe. To our knowledge, only one pollen type was
considered as “lodes type” in the USA (Leopold & MacGinitie, 1972). This specimen was not
represented nor described so we rejected this occurrence. The two other occurrences outside
Europe are from the Miocene of Cameroon (Salard-Cheboldaeff, 1975). Echiperiporites

minor is described as a periporate (5 pores) and echinulate pollen, which is apparently close to
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Phytocrene pollen. However, a re-examination of the original material (KWI-1 lame B,
W35/W36) led us to recognize about ten pores (J. Dejax com. Pers.), which allow the
rejection of this species, because no modern Icacinaceae pollen shows more than eight pores
(Lobreau-Callen, 1972). Echiperiporites icacinoides is described as three (4-5?) porate and
echinulate pollen which could correspond to Stachyanthus, Deptaulus (Leptaulus?,
Aquifoliaceae) and (mostly) lodes. The original material is decayed. We are waiting for its
potential restoration to eliminate the doubt and we decided here to reject this occurrence.

Four species of the fossil pollen genus, Compositoipollenites, have been considered
related to the Icacinaceae family. Manchester (2015) considers that “a comprehensive
comparative investigation remains to be done with attention to other families that also share
echinate pollen”, in order to confidently conclude about the affinity of these pollen
specimens. We decided to follow the same caution and we used the dubious status for all
Compositoipollenites pollen.

The wood attributed to Icacinaceae possesses a wide occurrence and stratigraphic
range (100.5-5.3 Ma). Unfortunately, they do not correspond to Icacinaceae s.s. and we
rejected them all. Indeed, Icacinaceae s.s. have simple perforation plates (Lens et al., 2008),
whereas Icacinoxylon has scalariform perforation plates. The explanation of this paradoxical
nomenclature consists in the initial affinity of this fossil genus was made with Citronella,
which is now in Cardiopteridaceae (Fig.1, Appendix), (Stull et al., 2015). The other wood
taxon, Apodytoxylon hamamelidoides has Apodytes affinity, which is now in Metteniusaceae

family (Fig. 1, Appendix).

3.2 Paleogeographic reconstruction
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We accepted 92 occurrences (mainly from endocarps), considered 45 occurrences as
dubious (mainly leaves and pollen species) and rejected 46 occurrences (mainly from the
wood species). According to our selection criteria, it has to be considered that all dubious
species could be false identifications. We represent them in the following part in order to
provide information about the potential range of the family, which could be a subject of
discussion, only accepted species will be used in the biogeographic discussions.

The occurrences of Icacinaceae all belong to a warm temperate or boreotropical and
tropical climate, except for the Paleocene Egyptian occurrence, which apparently belongs to
an arid climate (Icacinicarya youssefi). The Northern Hemisphere, in particular European and
North American areas, has almost all confident fossil occurrences. We have only one
occurrence for the Cretaceous period and the most of the occurrences are from the early and
middle-late Eocene. The Oligocene record is very poor. In term of (accepted) species richness
(Table 2.), only one species belongs to the Cretaceous period, 14 are Paleocene, 59 are
Eocene (38 from the early Eocene and 24 from the middle-late) and only 3 species are from
the Oligocene epoch.

Records of lodes extend from the Upper Cretaceous until the Oligocene. Phytocrene
appears in the fossil record during the Paleocene or during the Eocene. Endocarp fossils of
Pyrenacantha and Natsiatum were found during the Eocene, but only Pyrenacantha is known
from the Oligocene. We did not identify other extant genera represented in the fossil record.
No extinct genus is present during the Upper Cretaceous: almost all extinct records are found
in the Paleogene, mainly during the Eocene epoch. Removing the unnatural genera (based on
characters that allow us to assign specimens to Icacinaceae family, but not to a genus, e.g.,
Icacinicarya, Icacinicarytes), we can consider only one extinct genus during the Paleocene,

six genera from the Eocene and one genus from the Oligocene.
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4. Discussion

4.1 Age of the family

The age of Icacinaceae was estimated at 96.7 Ma with the help of molecular phylogeny
(Magallén et al., 2009). In another recent study, the estimated age was 104 Ma (Wikstrom et
al., 2015). This analysis used 17 fossil calibration points, but these are from various asterids,
no Icacinaceae fossil records were included. In another molecular study, the estimated age is
between 103 and 110 Ma, with the maximum likelihood method and between 65.5 and 100.3
Ma with a Bayesian analysis (Magallon et al., 2015). This last publication used numerous
fossils as calibration points and in particular three fossils attributed to Icacinaceae family:
Icacinoxylon alternipuncata, Icacinicarya papillaris, and lodes germanica. The icacinaeous
affinity of Icacinoxylon is rejected in this review, and Icacinicarya papillaris was considered
as dubious. Only lodes germanica seems to be an unambiguous Icacinaceae fossil. The
authors used 65.5 Ma as the age of calibration base on this record. Two reviews of the fossil
record of asteridae were made (Martinez-Millan, 2010; Manchester, 2015), highlighting a
Maastrichtian minimum age for the Icacinaceae family. In our review of the fossil record, 13
species belong to the Cretaceous epoch but only lodes germanica is accepted. The minimum
appearance age selected for lodes is 66 Ma (Upper Maastrichtian, following the International
chronostratigraphic chart v2017/02).

According to the previous studies, we consider the Upper Maastrichtian as the
minimum age given by the fossil record for the Icacinaceae family. However, the calibration
point for future molecular studies could be more precise including this minimum age at the

internal node lodes-Mappianthus (Stull et al., 2015) rather than at the Icacinaceae divergence.



351 4.2 Major changes in the family Icacinaceae

352 In our review, only lodes germanica species already occurs during the Upper

353  Cretaceous of Europe, showing that the Icacinaceae family is present in Europe (Fig. 2A).
354 This species is also found during the Upper Paleocene, at least this species crosses the

355  Cretaceous-Palaeogene boundary and persists during the Paleocene in the same area. This
356  could be a clue to the resilience of some families, and could explained by the previous results
357  based on the family level showing that the land plants did not suffer from global extinction
358  (but local turnover) during the Cretaceous-Palaeogene boundary (Cascales-Mifiana & Cleal,
359  2014). In addition, we show an increase of occurrences, genera, and species for the

360  Icacinaceae family during the Paleocene and new occurrences outside of Europe, mainly in
361  North America (Fig. 2B, Fig. 3), following the expansion of the boreotropical forest area

362  (Mai, 1989; Wolfe, 1975). The genus lodes seems to be limited to Europe during the Upper
363  Cretaceous. With seven new lodes species described for the Paleocene epoch, we show an
364  increase of species richness. All species of lodes from the Paleocene are very similar in term
365  of shape and only differ for some precise traits (size of the endocarp, reticular pattern, shape
366  of the ridges, Del Rio et al. 2019a).

367 We show a clear increase in Icacinaceae diversity during the early Eocene, in term of
368  species, new genera with new shapes, (Fig. 3). Among the 14 species present from the

369  Paleocene, only three species were found among the 38 early Eocene species. This shows a
370  turnover and an increase of diversity in the Icacinaceae family. Two genera were more

371  diverse, Palaeophytocrene and lodes, which are probably climber species. This increase could
372 be due to the new evergreen thermophilic flora, highly diversified and favourable to climbers,
373  flora that occurs during the PETM (Upchurch Jr & Wolfe, 1987; Collinson & Hooker, 2003)
374  and rapid turnover but not catastrophic changes for plants (Cavagnetto, 2000; Wing et al.,

375  2005; Collinson et al., 2009; Pigg & DeVore, 2009). In terrestrial diversity, studies show less
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perturbation but migrations of the fauna probably following the flora change (Godinot & de
Broin, 2003; Gingerich, 2006).

The genus Palaeophytocrene only has one species from Bogota (South America)
during the Paleocene and eight species during the Eocene from North America and Europe.
This could indicate a diversification and an expansion of the area of Paleophytocrene during
the PETM, following the expansion of the megathermal vegetation. Indeed, a geological
connection between North and South America for the Paleophytocrene was proposed during
the Paleocene (Stull et al., 2012). This connection became possible by the renewal of the
magmatic arc of the Northern Andes during the Paleocene-Eocene (Bayona et al., 2011;
Cardona et al., 2011). Therefore, this genus shows a strong evidence of potential exchanges
between tropical South America and boreotropical flora during this period. Changes during
the PETM in North America could be partially due to the flora spreading from South
America, followed by an expansion of these floras to Europe during the late Ypresian. New
endocarp shapes appeared at the end of early Eocene in Europe, as Faboidea,
Perforatocarpum, Sphaeriodes, Stizocarya, all of these genera are now extinct. Among the
eight lodes species from the Paleogene, three were found from the early Eocene showing a
partial but important change in Icacinaceae floristic composition (Del Rio & De Franceschi,
in press). In particular, among the 14 species that occur during the early Eocene, four have no
horn-like protrusions at the apex (associated to the vascularisation of the fruit), whereas in the
Paleocene, all lodes species have it (Del Rio et al. 2019a). Thus, we found new shapes and
new endocarp types during the early Eocene. These new shapes could be due to local
diversifications or migrations of new floras from other areas. All species from the Paleocene
are in Europe, whereas at least three species of lodes (one with horn-like protrusions, two
without) are in North America during the early Eocene. The connection between North

America and Europe during the Paleocene and early Eocene was well-documented (Wolfe,
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1975; Manchester, 1994, 1999). This connexion remains possible via the North Atlantic land
bridge (McKenna, 1975; Tiffney, 1985) and following the extension of the boreotropical
forest during the global warming. The migrating direction of exchanges (Asia-North America-
Europe or Asia-Europe-North America) was intensively discussed in mammal palacontology
(Godinot & de Broin, 2003; Smith et al., 2006; Beard, 2008). Here, we have clues for an
exchange from Europe during the early Eocene. In fact, all species with or without horn-like
protrusions are older in Europe than in North America. However, an lodes multireticulata
specimen, dated from 55.5 Ma was found in the USA, the occurrence of this species in
Europe was dated to about 51 Ma (Reid & Chandler, 1933; Tiffney, 1999). Nevertheless, we
suspected that the specimen from the Fisher/Sullivan site can be a new species instead of a
specimen of L. multireticulata. In fact, the size of the specimens from Fisher and London Clay
site seems distinctive. We show that the size of the endocarps could be used to differentiate
modern species when it exists a clear gap between the sizes within species (Del Rio, 2018).
This is here the case. With lodes and Paleophytocrene, we have in consequence two examples
of interchanges between North America and Europe, showing that the dispersion of floras was
bilateral.

Due to particularly warm climate, the widest fossil extension of the Icacinaceae (in
term of species richness and probable area) was reached during the early Eocene. However,
this is from the middle-late Eocene that were found the fossil records attributed to modern
genera as Natsiatum (Stull et al., 2011), Phytocrene, at first in Europe and then in the USA
(Stull et al., 2011; Collinson et al., 2012) and Pyrenacantha (Manchester, 1994). Therefore, it
is probably during the Eocene that the main modern genera appeared and diversified (Fig. 2D,
Table 2). In lodes, we show less species richness during the middle-late Eocene. These
“species richness regression’ could be attributed to the cooling climate (Collinson et al.,

1981; Keller, 1983; Zachos et al., 2008), what Tiffney (1985) called a “climatic
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deterioration”. This climate induced a change in floral structure, less favourable to the
climber species (Collinson & Hooker, 2003).

Only three occurrences of Icacinaceae were found during the Oligocene (Fig. 2E, Fig.
3B). This result shows an important decrease of diversity in the fossil record and is consistent
with a regression of the boreotropical forest. At the Oligocene-Eocene boundary, the climate
was probably the coolest of the Paleogene and remained cold throughout the Oligocene
(Zachos et al., 2001, 2008). The boreotropical flora regressed and the deciduous vegetation,
with less diversity, expanded (Tiffney, 1985). There are only two extant genera represented,
Pyrenacantha and lodes and one extinct genus, Palaeophytocrene. The species Pyrenacantha
austroamericana is from the Oligocene of Peru (Stull et al., 2012). The oldest fossil remains
of this genus is Pyrenacantha occidentalis of Lutetian age from Oregon, USA (Manchester,
1994). Thus, these two species show a connection between North and South America during
the Eocene. On the other side, the Oligocene lodes species is from Europe. This presence of
this species allows for the consideration of lodes as being present in Europe throughout the
Palaeogene. This genus was probably part of a remnant of the boreotropical forest, also which
is almost completely replaced in Europe by cold-tolerant species during the Neogene. (Wolfe,
1975, 1985, Tiffney, 1985). In this way, the lodes fossil from Miocene of Turkey (DDF obs.)
could also correspond to a late remain of this thermophilic European flora. Finally,
Palaeophytocrene sp. from Oregon, USA also shows a symmetrical pattern in North

American than lodes in Europe (Meyer & Manchester, 1997).

4.3. Comparison with the history of other angiosperm families

Our results are in accordance with the boreotropical regression hypothesis (Lavin & Luckow,

1993). In particular, Wen (1999) establishes a disjunction of 65 genera between North
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American and Asian floras, which occurred during the Miocene. This pattern could be
explained by an expansion of a boreotropical flora during the Paleocene and Eocene followed
by a high regression during the Neogene.

Some families, including Icacinaceae and Menispermaceae, were considered as
closely associated with the boreotropical flora (Wolfe, 1975). These two families have in
common a majority of species with a climber habit and a similar present-day distribution.
Thus, we can hypothesize that both families could have a similar history linked with the
boreotropical expansion and regressions. A fossil history of the Menispermaceae was
documented (Jacques, 2009). The Menispermaceae appeared during the Paleocene in the
fossil record (recorded from Cretaceous but dubiously), diversified during the Eocene and
then regressed during the Oligocene in Europe and North America. In particular, the
maximum of diversity was found during the PETM event. A new species of Menispermaceae,
Sinomenium macrocarpum Liu et Jacques, was found after this review from the Miocene of
North America (Liu & Jacques, 2010). However, this is probably a late refuge of the
boreotropical flora. New studies show Menispermaceae in South America during the
Paleocene (Herrera et al., 2011; Jud et al., 2018). These discoveries reveal a complex
relationship between North and South America during the Paleocene. The same pattern is
observed for the Icacinaceae family during the Paleocene (Stull et al., 2011).

In the Vitaceae, also a climber family, the oldest known fossil found is from India
before the continental collision (Manchester et al., 2013), followed by a rapid widespread
radiation during the Paleocene and Eocene in Northern Hemisphere. Other routes of
dispersion have been highlighted from South America (Manchester et al., 2012). In addition, a
study on the genus Parthenocissus (climber) shows a disjunction between Asia and North
America in the Early Miocene, which is congruent with the boreotropical regression (Nie et

al., 2010, 2012).
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Some other evidence of expansion during the Paleogene and regression/extinction of
tropical floras in some areas (mainly North America and Europe) during the Neogene are
found for Paliurus (Rhamnaceae), Sabiaceae family, Canarium (Burseraceae), Deviacer (?
Polygalaceae), Ulmaceae, Carya (Juglandaceae), Sapindaceae and Anacardium
(Anacardiaceae), (McClain & Manchester, 2001; Manchester et al., 2007; Burge &
Manchester, 2008; Wang et al., 2013; Zhang et al., 2013; Chen & Manchester, 2015; Jia et al.,
2015; Han et al., 2018). Therefore, the results in the dynamic of flora on the Menispermaceae

and other families are very congruent with what we found in the Icacinaceae family.

Conclusion

Among the 183 occurrences previously described as Icacinaceae, only 92 were accepted as
belonging to this family in this study and are mainly from endocarp remains. The minimum
age of the Icacinaceae family is probably the Upper Maastrichtian given by the fossil record
for the Icacinaceae family. With the accepted samplings, we show an increase of the species
richness during the Paleocene, probably due to the increase of temperature during the
Thanetian. A great increase of diversity in term of genera, species, and morphology is shown
through the Paleocene-Eocene boundary and during the Ypresian. Exchanges were shown
between North America and Europe during the PETM in both ways. This is during the middle
and late Eocene that most of the modern genera appear in the fossil record as Natsiatum,
Phytocrene, and Pyrenacantha. Finally, the cooling period during the Oligocene, less
favourable to climbers, could explain the decrease in the diversity of the Icacinaceae in the
fossil record. We show the same pattern of diversification and regression in other
megathermal families (Menispermaceae, Vitaceae...) showing a global dynamic of the North

Hemisphere forest (boreotropical sensu. Wolfe, 1975) during the Paleogene.
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