F. A. Al-horani, Physiology of skeletogenesis in scleractinian corals, Diseases of coral, pp.192-205, 2016.

A. C. Baker, C. J. Starger, T. R. Mcclanahan, and P. W. Glynn, Corals' adaptive response to climate change, Nature, vol.430, p.741, 2004.

S. Barker and H. Elderfield, Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO 2, Science, vol.297, issue.5582, pp.833-836, 2002.

D. J. Barnes and J. M. Lough, On the nature and causes of density banding in massive coral skeleton, J. Exp. Mar. Biol. Ecol, vol.167, pp.91-108, 1993.

L. Beaufort, I. Probert, T. De-garidel-thoron, E. M. Bendif, D. Ruiz-pino et al., Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, vol.476, issue.7358, pp.80-83, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00866853

B. E. Benson, J. P. Rippe, C. B. Bove, and K. D. Castillo, Apparent timing of density banding in the Caribbean coral Siderastrea siderea suggests complex role of key physiological variables, Coral Reefs, vol.38, issue.1, pp.165-176, 2019.

P. Blanchon, Last interglacial and reef development, Encylopedia of modern coral reefs, pp.621-639, 2011.

A. Böcker, Interannual and seasonal climate variability recorded by reef corals, Plio/Pleistocene (Florida) and Mio/Pliocene (Dominican Republic), p.141, 2014.

S. Booker, B. Jones, T. Chacko, and L. Li, Insights into sea surface temperatures from the Cayman Islands from corals over the last~540 years, Sediment. Geol, vol.389, pp.218-240, 2019.

T. C. Brachert, C. Betzler, J. C. Braga, and J. M. Martín, Record of climatic change in neritic carbonates: Turnovers in biogenic associations and depositional modes (Upper Miocene, southern Spain), Geol. Rundsch, vol.85, pp.327-337, 1996.

T. C. Brachert, M. Reuter, T. Felis, K. F. Kroeger, G. Lohmann et al., Porites corals from Crete (Greece) open a window into Late Miocene, 2006.

, Ma) seasonal and interannual climate variability, Earth Planet. Sci. Lett, vol.245, pp.81-94

T. C. Brachert, M. Reuter, K. F. Kroeger, and J. Lough, Coral growth bands: A new and easy to use paleothermometer in paleoenvironment analysis and paleoceanography (late Miocene, Greece), Paleoceanography, vol.21, p.4217, 2006.

T. C. Brachert, A. Vescogni, F. R. Bosellini, M. Reuter, and R. Mertz-kraus, High salinity variability during the early Messinian revealed by stable isotope signatures from vermetid and Halimeda reefs of the Mediterranean region, Geologica Romana, vol.40, pp.1-16, 2007.

T. C. Brachert, M. Reuter, S. Krüger, A. Böcker, H. Lohmann et al., Density banding in corals: barcodes of past and current climate change, Coral Reefs, vol.32, pp.1013-1023, 2013.

T. C. Brachert, M. Reuter, S. Krüger, J. Kirkerowicz, and J. S. Klaus, Upwelligs mitigated Plio-/Pleistocene heat stress for reef corals on the Florida platform (USA), Biogeosciences, vol.13, pp.1469-1489, 2016.

T. C. Brachert, M. Reuter, S. Krüger, J. S. Klaus, K. Helmle et al., Low Florida coral calcification rates in the Plio-Pleistocene, Biogeosciences, vol.13, issue.15, pp.4513-4532, 2016.

A. A. Bruch, T. Utescher, V. Mosbrugger, and N. Members, Precipitation patterns in the Miocene of Central europe and the development of continentality, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.304, pp.202-211, 2011.

A. F. Budd, Diversity and extinction in the Cenozoic history of Caribbean reefs, Coral Reefs, vol.19, issue.1, pp.25-35, 2000.

B. Cahuzac and C. Chaix, Structural and faunal evolution of Chattian -Miocene reefs and corals in western France and the Northeastern Atlantic Ocean, Concepts in Sedimentology and Paleontology. SEPM, pp.105-127, 1996.

B. Cahuzac, L. Turpin, and P. Bonhomme, Sr isotope record in the area of the Lower Miocene historical stratotypus of the Aquitaine Basin, Miocene stratigraphy -an integrated approach. Developments in Paleontology and Stratigraphy, pp.33-56, 1997.

W. J. Cai, X. Hu, W. Huang, L. Jiang, Y. Wang et al., Alkalinity distribution in the western North Atlantic Ocean margins, J. Geophys. Res, vol.115, p.8014, 2010.

E. D. Crook, A. L. Cohen, M. Rebolledo-vieyra, L. Hernandez, and A. Paytan, Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification, Proceed. Acad. Nat. Sci, vol.110, issue.27, pp.11044-11049, 2013.

C. Miranda, D. N. Sherman, C. E. Ramirez, W. Hubbard, and D. , Coral growth rates from the Holocene Cañada Honda fossil reef, Southwestern Dominican Republic: Comparisons with modern counterparts in high sedimentation settings, Caribb. J. Sci, vol.45, issue.1, pp.94-109, 2009.

J. P. Cuif and Y. Dauphin, The Environment Recording Unit in coral skeletons -a synthesis of structural and chemical evidences for a biochemically driven, steppinggrowth process in fibres, Biogeosciences, vol.2, pp.61-73, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00330309

T. Cyronak, K. G. Schulz, and P. L. Jokiel, The Omega myth: what really drives lower calcification rates in an acidifying ocean, ICES J. Mar. Sci, vol.73, issue.3, pp.558-562, 2016.

C. Angelo, B. C. Hume, J. Burt, E. G. Smith, E. P. Achterberg et al., Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf, ISME J, vol.2015, pp.1-10, 2015.

C. Darwin, The geology of the voyage of the Beagle, Part 1: The structure and distribution of coral reefs, p.214

G. De'ath, J. M. Lough, and K. E. Fabricius, Declining coral calcification on the Great Barrier Reef, Science, vol.323, issue.5910, pp.116-119, 2009.

T. M. Decarlo and A. L. Cohen, Dissepiments, density bands and signatures of thermal stress in Porites skeletons, Coral Reefs, vol.36, pp.749-761, 2017.

K. L. Delong, Corals (Sclerochronology), Encyclopedia of Scientific Dating Methods, pp.187-191, 2015.

R. F. Denniston, S. C. Penn, and A. F. Budd, Constraints on Late Miocene shallow marine seasonality for the Central Caribbean using oxygen isotopes and Sr/Ca ratios in a fossil coral, Topics in Geobiology. Springer Science, pp.47-63, 2008.

T. Done, Corals: Environmental controls on growth, Encyclopedia of Modern Coral Reefs -Structure, Form and Process, pp.281-293, 2011.

J. L. Drake, T. Mass, J. Stolarski, S. Von-euw, B. Van-de-schootbrugge et al., How corals made rocks through the ages, Global Change Biol, vol.26, pp.31-53, 2020.

E. R. Druffel, Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate, Proceed. Nat. Acad. Sci. USA, vol.94, pp.8354-8361, 1997.

W. Dullo, Progressive diagenetic sequence of aragonite structures: Pleistocene coral reefs and their modern counterparts on the eastern Red Sea coast, Saudi Arabia, Palaeontographica Americana, vol.54, pp.254-160, 1984.

E. M. Elizalde-rendon, G. Horta-puga, P. Gonzalez-diaz, and J. P. Carricart-ganivet, Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic, Coral Reefs, vol.29, pp.607-614, 2010.

R. Enmar, M. Stein, M. Bar-matthews, E. Sass, A. Katz et al., Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers, Geochim. Cosmochim. Acta, vol.64, issue.18, pp.3123-3132, 2000.

K. E. Fabricius, C. Langdon, S. Uthicke, C. Humphrey, S. Noonan et al., Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations, Nat. Clim. Change, vol.1, issue.3, pp.165-169, 2011.

P. Fantazzini, S. Mengoli, L. Pasquini, V. Bortolotti, L. Brizi et al., Gains and losses of coral skeletal porosity changes with ocean acidification, Nature Commun, vol.6, p.7785, 2015.

A. V. Fedorov, C. M. Brierley, K. T. Lawrence, Z. Liu, P. S. Dekens et al., Patterns and mechanisms of early Pliocene warmth, Nature, vol.496, issue.7443, pp.43-49, 2013.

T. Felis, J. Pätzold, M. Shiyomi, H. Kawahata, H. Koizumi et al., Global environmental change in the ocean and on land, pp.205-227, 2004.

T. Felis, J. Pätzold, Y. Loya, and G. Wefer, Vertical water mass mixing and plankton blooms recorded in skeletal stable carbon isotopes of a Red Sea coral, J. Geophys. Res, vol.103, pp.30731-30739, 1998.

T. Felis, J. Pätzold, and Y. Loya, Mean oxygen-isotope signatures in Porites spp. corals: inter-colony variability and correction for extension-rate effects, Coral Reefs, vol.22, pp.328-336, 2003.

M. Fine and D. Tchernov, Scleractinian coral species survive and recover from decalcification, Science, vol.315, issue.5820, p.1811, 2007.

E. Flügel, Triassic reef patterns, Phanerozoic Reef Patterns, pp.391-463, 2002.

K. Frankowiak, X. T. Wang, D. M. Sigman, A. M. Gothmann, M. V. Kithahara et al., Photosymbiosis and the expansion of shallow-water corals, Science Advances, vol.2016, issue.2, pp.1-7, 2016.

J. Gattuso, M. Frankignoulle, I. Bourge, S. Romaine, and R. W. Buddemeier, Effect of calcium carbonate saturation of seawater on coral calcification, Global and Planetary Change, vol.18, issue.1-2, pp.37-46, 1998.

E. Gischler, J. Hudson, and D. Storz, Growth of Pleistocene massive corals in south Florida: low skeletal extension-rates and possible ENSO, decadal, and multi-decadal cyclicities, Coral Reefs, vol.28, issue.4, pp.823-830, 2009.

P. W. Glynn, Extensive "bleaching" and death of reef corals on the Pacific coast of Panama, Environ. Conserv, vol.10, pp.149-154, 1983.

T. F. Goreau, The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull, vol.116, pp.59-75, 1959.

F. M. Gradstein, J. G. Ogg, and F. J. Hilgen, On the geologic time scale, Newsl. Stratigr, vol.45, issue.2, pp.171-188, 2012.

N. Griffiths, W. Müller, K. G. Johnson, and O. A. Aguilera, Evaluation of the effect of diagenetic cements on element/Ca ratios in aragonitic Early Miocene (~16 Ma) Caribbean corals: Implications for "deep-time" palaeoenvironmental reconstructions, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.369, pp.185-200, 2013.

J. M. Guinotte, R. W. Buddemeier, and J. Kleypas, Future coral reef habitat marginality: Temporal and spatial effects of climate change in the Pacific basin, Coral Reefs, vol.22, pp.551-558, 2003.

R. B. Halley and L. M. Roulier, Reconstructing the history of eastern and central Florida Bay using mollusk-shell isotope records, Estuaries, vol.22, issue.2b, pp.358-368, 1999.

P. Hallock and W. Schlager, Nutrient excess and the demise of coral reefs and carbonate platforms, Palaios, vol.1, pp.389-398, 1986.

M. Harzhauser, J. Peckmann, D. Birgel, E. Draganits, O. Mandic et al., Stromatolites in the Paratethys during the Middle Miocene climate transition as witness of the Badenian slinity crisis, Facies, vol.60, pp.429-444, 2014.

G. A. Heiss, Coral reefs in the Red Sea: Growth, production, and stable isotopes, Geomar Rep, vol.32, pp.1-141, 1994.

K. P. Helmle, R. E. Dodge, and R. A. Ketcham, Skeletal architecture and density banding in Diploria strigosa by X-ray computed tomography, Proceedings 9th International Coral Reef Symposium, vol.1, pp.365-371, 2000.

T. Higuchi, H. Fujimura, I. Yuyama, S. Harii, S. Agostini et al., Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas, PLoS ONE, vol.9, issue.3, p.91021, 2014.

G. E. Hofmann, J. E. Smith, K. S. Johnson, U. Send, L. A. Levin et al., High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS ONE, vol.6, issue.12, 2011.

B. Hönisch, N. G. Hemming, D. Archer, M. Siddall, and J. F. Mcmanus, Atmospheric carbon dioxide concentration across the mid-Pleistocene transition, Science, vol.324, issue.5934, pp.1551-1554, 2009.

B. Hönisch, A. Ridgwell, D. N. Schmidt, E. Thomas, S. J. Gibbs et al., The geological record of ocean acidification, Science, vol.335, pp.1058-1063, 2012.

E. Howells, G. Dunshea, D. Mcparland, G. Vaughan, S. Heron et al., Species-Specific coral calcification Responses to the extreme environment of the Southern Persian Gulf. Front, Mar. Sci, vol.5, issue.56, 2018.

J. H. Hudson, E. A. Shinn, R. B. Halley, and B. H. Lidz, Sclerochronology: a tool for interpreting past environments, Geology, vol.4, pp.361-364, 1976.

N. P. James, Reef environment, Carbonate Depositional Environments, vol.33, pp.345-440, 1983.

N. P. James and P. Bourque, Facies Models: Response to Sea Level Change. Geological Association of Canada, pp.323-347, 1992.

K. Janiszewska, M. Mazur, S. Escrig, A. Meibom, and J. Stolarski, Aragonitic scleractinian corals in the Cretaceous calcitic sea, Geology, vol.45, issue.4, pp.319-322, 2017.

K. G. Johnson and M. E. Pérez, Skeletal extension rates of Cenozoic Caribbean reef corals, Palaios, vol.21, pp.262-271, 2006.

W. Kiessling and C. Simpson, On the potential for ocean acidification to be a general cause of ancient reef crises, Global Change Biol, vol.17, pp.56-67, 2011.

W. Kiessling, E. Flügel, and J. Golonka, Phanerozoic Reef Patterns. 72, p.775, 2002.

M. V. Kitahara, S. D. Cairns, J. Stolarski, D. Blair, and D. J. Miller, A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data, PLoS ONE, vol.5, issue.7, p.11490, 2010.

J. S. Klaus, J. F. Meeder, D. F. Mcneill, J. F. Woodhead, and P. K. Swart, Expanded Florida reef development during the mid-Pliocene warm period, 2017.

J. A. Kleypas, R. W. Buddemeier, D. Archer, J. Gattuso, C. Langdon et al., Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, vol.284, issue.5411, pp.118-120, 1999.

J. A. Kleypas, J. W. Mcmanus, and L. A. Menez, Environmental limits to coral reef development. Where do we draw the line?, Am. Zool, vol.39, pp.146-159, 1999.

D. W. Knutson, R. W. Buddemeier, and S. V. Smith, Coral chronometers: seasonal growth bands in reef corals, Science, vol.177, pp.270-272, 1972.

M. Ková?, N. Hudá?ková, E. Halásová, M. Ková?ová, K. Holcová et al., The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment, Acta, vol.9, issue.2, pp.75-114, 2017.

L. Kump, T. Bralower, and R. Andy, Ocean acidification in deep time, Oceanography, vol.22, 2009.

C. Langdon, T. Takahashi, C. Sweeney, D. Chipman, and J. Goddard, Effect of calcium carbonate saturation on the calcification rate of an experimental coral reef, Global Biogeochemical Cycles, vol.14, pp.639-654, 2000.

C. H. Lear, H. K. Coxall, G. L. Foster, D. J. Lunt, E. M. Mawbey et al., Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry, Paleoceanography, vol.30, issue.11, pp.1437-1454, 2015.

J. J. Leder, P. K. Swart, A. Szmant, and R. E. Dodge, The origin of variations in the isotopic record of scleractinian corals: 1 Oxygen, Geochimica et Cosmochim. Acta, vol.60, pp.2857-2870, 1996.

A. N. Legrande and G. A. Schmidt, Global gridded data set of the oxygen isotopic composition in seawater, Geophys. Res. Lett, vol.33, issue.12, 2006.

M. W. Longman, Carbonate diagenetic textures from nearsurface diagenetic environments, American AAPG Bull, vol.64, pp.461-487, 1980.

J. M. Lough, Coral calcification from skeletal records revisited, Mar. Ecol. Prog. Ser, vol.373, pp.257-264, 2008.

J. M. Lough and D. J. Barnes, Environmental controls on growth of the massive coral Porites, J. Exp. Mar. Biol. Ecol, vol.245, pp.225-243, 2000.

J. M. Lough and T. F. Cooper, New insights from coral growth band studies in an era of rapid environmental change, Earth Sci. Rev, vol.108, pp.170-184, 2011.

P. Lozouet, P. Maestrati, and R. Favia, Un site exceptionnel du Miocène inférieur (Aquitanien): la`Carrière Vives´(Meilhan, Cossmannia, vol.8, pp.47-67, 2001.

G. Mackenzie, C. M. Veauvy, P. K. Swart, B. R. Rosen, and J. G. Darrell, Climatic variation in the early to middle Eocene using the stable oxygen isotopic composition of coral skeletons, Geol. Soc. Am. Abstr. Programs, vol.29, issue.7, p.395, 1997.

D. P. Manzello, I. C. Enochs, A. Bruckner, P. G. Renaud, G. Kolodziej et al., Galapagos coral reef persistence after ENSO warming across an acidification gradient, Geophys. Res. Lett, vol.41, pp.9001-9008, 2014.

T. Mcconnaughey, 13 C and 18 O isotopic disequilibrium in biological carbonates: I. Patterns, Geochim. Cosmochim. Acta, vol.53, pp.151-162, 1989.

M. T. Mcculloch, J. P. Olivo, J. Falter, M. Holcomb, and J. A. Trotter, Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation, Nat. Commun, vol.8, p.15686, 2017.

H. V. Mcgregor and M. K. Gagan, Diagenesis and geochemistry of Porites corals from Papua New Guinea: Implications for paleoclimate reconstruction, Geochimica et Cosmochim. Acta, vol.67, issue.12, pp.2147-2156, 2003.

R. Mertz-kraus, T. C. Brachert, and M. Reuter, Tarbellastraea (Scleractinia): A new stable isotope archive for Late Miocene paleoenvironments in the Mediterranean, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.257, issue.3, pp.294-307, 2008.

R. Mertz-kraus, T. C. Brachert, K. P. Jochum, M. Reuter, and B. Stoll, LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.273, pp.25-40, 2009.

R. Mertz-kraus, T. C. Brachert, M. Reuter, S. J. Galer, C. Fassoulas et al., Late Miocene sea surface salinity variability in the Eastern Mediterranean inferred from coral aragonite ? 18 O, Chem. Geol, vol.262, pp.202-216, 2009.

J. E. Meulenkamp, W. Sissingh, J. P. Calvo, R. Daams, L. Londeix et al., Atlas Peri-Tethys, pp.179-186, 2000.

A. Micheels, A. A. Bruch, J. Eronen, M. Fortelius, M. Harzhauser et al., Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model, Palaeogeogr. Palaeoclimatol. Palaeoecol, 2010.

N. R. Mollica, W. Guo, A. L. Cohen, K. F. Huang, G. L. Foster et al., Ocean acidification affects coral growth by reducing skeletal density, Proceedings of the Academy of Natural Sciences of Philadelphia, p.6, 2018.

H. Pälike, M. W. Lyle, H. Nishi, I. Raffi, A. Ridgwell et al., Nature, vol.488, issue.7413, pp.609-614, 2012.

O. Parize, T. Mulder, B. Cahuzac, N. Fiet, L. Londeix et al., Sedimentology and sequence stratigraphy of Aquitanian and Burdigalian stratotypes in the Bordeaux area (southwestern France), Compt. Rendus Geosci, vol.340, pp.390-399, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00376296

C. Perrin, Tertiary: The emergence of modern reef ecosystems, Phanerozoic Reef Patterns. SEPM Special Publication, pp.587-621, 2002.
URL : https://hal.archives-ouvertes.fr/mnhn-00491189

C. Perrin and F. R. Bosellini, Paleobiogeography of scleractinian reef corals: Changing patterns during the Oligocene-Miocene climatic transition in the Mediterranean, Earth Sci. Rev, vol.111, pp.1-24, 2012.
URL : https://hal.archives-ouvertes.fr/mnhn-02668183

C. Perrin and J. P. Cuif, Ultrastructural controls of diagenetic patterns of scleractinian skeletons: evidence at the scale of colony lifetime, Bull. Tohoku Univ. Museum, vol.1, pp.210-218, 2001.
URL : https://hal.archives-ouvertes.fr/mnhn-02866784

C. Perrin and W. Kiessling, Latitudinal trends in Cenozoic reef patterns and their relationsship to climate, Int. Assoc. Sedimentol. Spec. Publ, vol.42, pp.17-34, 2010.

C. Perrin and D. C. Smith, Earliest steps of diagenesis in living coral skeletons: evidence from ultrastructural pattern and Raman spectroscopy, J. Sed. Res, vol.77, pp.495-507, 2007.
URL : https://hal.archives-ouvertes.fr/mnhn-00491174

J. C. Plaziat, C. S. Perrin, N. France, and . Spain, Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain, Palaeoecologic relations with coral reefs, vol.96, pp.195-231, 1992.
URL : https://hal.archives-ouvertes.fr/mnhn-02669142

S. V. Popov, F. Rögl, A. Y. Rozanov, F. F. Steininger, I. G. Shcherba et al., Lithological-Paleogeographic maps of Paratethys, 10 Maps Late Eocene to Pliocene, Courier Forschungsinstitut Senckenberg (CFS), vol.250, pp.1-46, 2004.

T. M. Quinn, F. W. Taylor, T. J. Crowley, and S. M. Link, Evaluation of sampling resolution in coral stable isotope records: A case study using records from New Caledonia and Tarawa, Paleocenanography, vol.11, pp.529-542, 1996.

M. E. Raymo, The initiation of Northern Hemisphere glaciation, Ann. Rev. Earth Pl Sc, vol.22, pp.353-383, 1994.

W. Renema, J. M. Pandolfi, W. Kiessling, F. R. Bosellini, J. S. Klaus et al., Are coral reefs victims of their own success?, Science Advances, vol.2, issue.4, p.1500850, 2016.

M. Reuter, T. C. Brachert, and K. F. Kroeger, Diagenesis of growth bands in fossil scleractinian corals: Identification and modes of preservation, Facies, vol.51, pp.155-168, 2005.

B. Riegl, A. Bruckner, S. L. Coles, P. Renaud, and R. E. Dodge, Coral Reefs. In: Threats and Conservation in an Era of Global Change, The Year in Ecology and Conservation Biology, Ann. N.Y. Acad. Sci, pp.136-186, 2009.

J. B. Ries, S. M. Stanley, and L. A. Hardie, Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater, Geology, vol.34, pp.525-528, 2006.

J. B. Ries, A. L. Cohen, and D. C. Mccorkle, Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification, Geology, vol.37, issue.12, pp.1131-1134, 2009.

S. L. Romano and S. D. Cairns, Molecular phylogenetic hypotheses for the evolution of scleractinian corals, Bull. Mar. Sci, vol.67, issue.3, pp.1043-1068, 2000.

S. L. Romano and S. R. Palumbi, Evolution of scleractinian corals inferred from molecular systematics, Science, vol.271, issue.5249, pp.640-642, 1996.

B. R. Rosen, Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K-T boundary, pp.164-180, 2000.

L. M. Roulier and T. M. Quinn, Seasonal-to decadal-scale climatic variability in southwest Florida during the middle Pliocene: Inferences from a coralline stable isotope record, Paleoceanography, vol.10, issue.3, pp.429-443, 1995.

C. Scheibner and R. P. Speijer, Decline of coral reefs during late Paleocene to early Eocene global warming, vol.3, pp.19-26, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00298253

J. H. Schroeder, , p.448, 1986.

T. P. Scoffin, A. W. Tudhope, B. E. Brown, H. Chansang, and R. F. Cheeney, Environmental controls of Porites lutea, south Thailand, Coral Reefs, vol.11, pp.1-13, 1992.

O. Seki, G. L. Foster, D. N. Schmidt, A. Mackensen, K. Kawamura et al., Alkenone and boron-based Pliocene pCO 2 records, Earth Planet. Sci. Lett, vol.292, pp.201-211, 2010.

E. A. Shinn, Coral growth-rate, an environmental indicator, J. Paleontol, vol.40, pp.233-240, 1966.

F. J. Sierro, J. A. Flores, G. Francés, A. Vazquez, R. Utrilla et al., Orbitally controlled oscillations in planktic communities and cyclic changes in western Mediterranean hydrography during the Messinian, Paleogeogr. Paleoclimatol. Paleoecol, vol.190, pp.289-316, 2003.

S. M. Sosdian, R. Greenop, M. P. Hain, G. L. Foster, P. N. Pearson et al., Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy, Earth Planet. Sci. Lett, vol.498, pp.362-376, 2018.

G. D. Stanley, The evolution of modern corals and their early history, Earth Sci. Rev, vol.60, pp.195-225, 2003.

G. Stanley and B. Van-de-schootbrugge, The evolution of the coral-algal symbiosis and coral bleaching in the geologic past, In: Coral Bleaching Patterns, Processes, Causes and Consequences, pp.9-26, 2018.

G. D. Stanley and P. K. Swart, Evolution of the coral-zooxanthellae symbiosis during the triassic: A geochemical approach, Paleobiology, vol.21, pp.179-199, 1995.

J. Stolarski, Three-dimensional micro-and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy, Acta Palaeontol. Pol, vol.48, issue.4, pp.497-530, 2003.

J. Stolarski, F. R. Bosellini, C. C. Wallace, A. M. Gothmann, M. Mazur et al., A uniquie coral biomineralization pattern has resisted 40 million years of major ocean chemistry change, Sci. Rep, vol.6, 2016.

P. K. Swart, Carbon and oxygen isotope fractionation in scleractinian corals: A review, Earth Sci. Rev, vol.19, pp.51-80, 1983.

P. K. Swart, G. F. Healy, R. E. Dodge, P. Kramer, J. H. Hudson et al., The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160 year record of climatic and anthropogenic influence, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.123, pp.219-237, 1996.

E. Tambutté, A. A. Venn, M. Holcomb, N. Segonds, N. Techer et al., Morphological plasticity of the coral skeleton under CO 2 -driven seawater acidification, Nature Commun, vol.6, 2015.

A. K. Tripati, C. D. Roberts, R. A. Eagle, and G. Li, A 20 million year record of planktic foraminiferal B/Ca ratios: Systematics and uncertainties in pCO 2 reconstructions, Geochimica et Cosmochim. Acta, vol.75, issue.10, pp.2582-2610, 2011.

A. W. Tudhope, D. W. Lea, G. B. Shimmield, S. Chilcott, and S. Head, Monsoon climate and Arabian sea coastal upwelling recorded in massive corals from southern Oman, Palaios, vol.11, issue.4, pp.347-361, 1996.

J. E. Veron, Corals of the world, 1. Australian Institute of Marine Science, 2000.

J. E. Veron, Encyclopedia of modern coral reefs -structure, form and process, pp.275-281, 2011.

T. Watanabe, A. Suzuki, S. Minobe, T. Kawashima, K. Kameo et al., Permanent El Nino during the Pliocene warm period not supported by coral evidence, Nature, vol.471, issue.7337, pp.209-211, 2011.

T. L. Weiss, R. F. Denniston, A. D. Wanamaker, G. Villarini, and A. S. Von-der-heydt, El Niño-Southern Oscillation-like variability in a late Miocene Caribbean coral, 2017.

C. H. White, D. W. Bosence, B. R. Rosen, and C. C. Wallace, Response of Acropora to warm climates; lessons from the geological past, 11th International Coral Reef Symposium, Ft. Lauderdale, pp.7-12, 2008.

J. L. Wilson, Carbonate Facies in Geologic History, p.471, 1975.

M. E. Wilson and B. R. Rosen, Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or Centre of Origin?, Biogeography and Geological Evolution of SE Asia. Backhuys, pp.165-195, 1998.

R. A. Wood, Reef Evolution, 1999.

F. P. Worum, J. P. Carricart-ganivet, L. Besnon, and D. Golicher, Simulation and observation of annual density banding in skeletons of Montastrea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming, Limnol. Oceanogr, vol.52, issue.2, pp.2317-2323, 2007.

J. Zachos, M. Pagani, L. Sloan, E. Thomas, and K. Billups, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, vol.292, pp.686-693, 2001.