J. Kasting, What caused the rise of atmospheric O2?, Chem. Geol, vol.362, pp.13-25, 2013.

D. J. Des-marais, Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon, Org. Geochem, vol.27, issue.5-6, pp.185-193, 1997.

J. A. Karhu and H. D. Holland, Carbon isotopes and the rise of atmospheric oxygen, Geology, vol.24, issue.10, pp.867-870, 1996.

M. Schidlowski, Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept, Precambrian Res, vol.106, issue.1-2, pp.117-134, 2001.

P. Aharon, Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidation events, Precambrian Res, vol.137, pp.207-222, 2005.

J. Krissansen-totton, R. Buick, and D. C. Catling, A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen, Am. J. Sci, vol.315, issue.4, pp.275-316, 2015.

A. P. Martin, D. J. Condon, A. R. Prave, and A. Lepland, A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event), Earth Sci. Rev, vol.127, pp.242-261, 2013.

A. Bekker, Fractionation between inorganic and organic carbon during the Lomagundi (2.22-2.1 Ga) carbon isotope excursion, Earth Planet. Sci. Lett, vol.271, issue.1-4, pp.278-291, 2008.

A. Maheshwari, Global nature of the Paleoproterozoic Lomagundi carbon isotope excursion: a review of occurrences in Brazil, India, and Uruguay, Precambrian Res, vol.182, issue.4, pp.274-299, 2010.

V. A. Melezhik, H. Huhma, D. J. Condon, A. E. Fallick, and M. J. Whitehouse, Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology, vol.35, issue.7, pp.655-658, 2007.

F. Frauenstein, J. Veizer, N. Beukes, H. S. Van-niekerk, and L. L. Coetzee, Transvaal supergroup carbonates: implications for paleoproterozoic ? 18 O and ? 13 C records, Precambr. Res, vol.175, pp.149-160, 2009.

J. M. Hayes and J. R. Waldbauer, The carbon cycle and associated redox processes through time, Philos. Trans. R. Soc. B, vol.361, pp.931-950, 2006.

H. E. Frimmel, On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation, Precambrian Res, vol.182, pp.239-253, 2010.

G. A. Shields, M. D. Brasier, P. Stille, and D. I. Dorjnamjaa, Factors contributing to high ? 13 C values in Cryogenian limestones of western Mongolia, Earth Planet. Sci. Lett, vol.196, issue.3-4, pp.99-111, 2002.

G. M. De-paulasantos, S. Caetano-filho, M. Babinski, and J. Enzweiler, Rare elements of carbonate rocks from the Bambui Group, southern Sao Francisco Basin, Brasil, and their significance as paleoenvironmental proxies, Precambrian Res, vol.305, pp.327-340, 2017.

R. M. Klaebe, M. J. Kennedy, A. J. Jarrett, and J. J. Brocks, Local paleoenvironmental controls on the carbon-isotope record defining the Bitter Springs Anomaly, Geobiology, vol.15, issue.1, pp.65-80, 2017.

V. A. Melezhik, A. E. Fallick, P. V. Medvedev, and V. V. Makarikhin, Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-red beds' association in a global context: a case for the world-wide signal enhanced by a local environment, Earth-Sci. Rev, vol.48, issue.1-2, pp.71-120, 1999.

C. L. Blättler, Two-billion-year-old evaporites capture Earth's great oxidation, Science, vol.360, issue.6386, pp.320-323, 2018.

M. S. Hodgskiss, P. W. Crockford, Y. Peng, B. A. Wing, and T. J. Horner, A productivity collapse to end Earth's Great Oxidation, Proc. Natl. Acad. Sci, vol.116, pp.17207-17212, 2019.

C. A. Partin, Uranium in iron formations and the rise of atmospheric oxygen, Chem. Geol, vol.362, pp.82-90, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00933431

Y. Kanzaki and T. Murakami, Estimates of atmospheric O 2 in the Paleoproterozoic from paleosols, Geochim. Cosmochim. Acta, vol.174, p.18186, 2016.

A. I. Sheen, A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia, Geochim. Cosmochim. Acta, vol.227, pp.75-95, 2018.

N. Galili, The geologic history of seawater oxygen isotopes from marine iron oxides, Science, vol.365, issue.6452, pp.469-473, 2019.

L. P. Knauth, Temperature and salinity of the Precambrian ocean: implications for the course of microbial evolution, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.219, pp.53-69, 2005.

R. Tartèse, M. Chaussidon, A. Gurenko, F. Delarue, and F. Robert, Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants, Geochem. Perspect. Lett, vol.3, pp.55-65, 2017.

J. Kasting, Methane and climate during the Precambrian era, Precambr. Res, vol.137, pp.119-129, 2005.

J. Kasting, Early Earth: faint young Sun redux, Nature, vol.464, issue.7289, p.687, 2010.

J. Zinke, J. J. Reijmer, and B. Thomassin, Systems tracts sedimentology in the lagoon of Mayotte associated with the Holocene transgression, Sed. Geol, vol.160, pp.57-79, 2003.

N. Feuillet, M. Cruise, and . Dufresne, , p.217, 2019.

C. Leboulanger, Microbial diversity and cyanobacterial production in Dziani Dzaha crater lake, a unique tropical thalassohaline environment, PLoS ONE, vol.12, p.168879, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01465841

V. Milesi, Formation of Mg-smectite during lacustrine carbonates early diagenesis: study case of the volcanic crater lake Dziani Dzaha, Sedimentology, 2018.

E. Gérard, Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha, Front. Microbiol, vol.9, pp.1-20, 2018.

M. Cellamare, Characterization of phototrophic microorganisms and description of new cyanobacteria isolated from the saline-alkaline crater-lake Dziani Dzaha, FEMS Microbiol. Ecol, vol.94, issue.8, pp.1-25, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01903434

M. Hugoni, Spatiotemporal variations in microbial diversity across the three domains of life in a tropical thalassohaline lake, Molecular Ecology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01961707

B. Marty, G. Avice, D. V. Bekaert, and M. W. Broadley, Salinity of the Archaean oceans from analysis of fluid inclusions in quartz, Compte Rendus Geosci, vol.350, issue.4, pp.154-163, 2018.

W. W. Hay, Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate ocean circulation and life, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.240, issue.1-2, pp.3-46, 2006.

J. Marin-carbonne, M. Chaussidon, and F. Robert, Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions, Geochim. Cosmochim. Acta, vol.92, pp.129-147, 2012.

J. Marin-carbonne, F. Robert, and M. Chaussidon, The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?, Precambr. Res, vol.247, pp.223-234, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01769048

I. Halevy and A. Bachan, The geologic history of seawater pH, Science, vol.355, pp.1069-1071, 2017.

T. T. Isson and N. J. Planavsky, Reverse weathering as a long-term stabilizer of marine pH and planetary climate, Nature, vol.560, issue.7719, pp.471-475, 2018.

J. Krissansen-totton, G. N. Arney, and D. C. Catling, Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model, Proc. Natl. Acad. Sci, vol.115, issue.16, pp.4105-4110, 2018.

E. E. Stüeken, R. Buick, and A. J. Schauer, Nitrogen isotope evidence for alkaline lakes on late Archean continents, Earth Planet. Sci. Lett, vol.411, pp.1-10, 2015.

J. K. Bartley and L. C. Kah, Marine carbon reservoir, C org -C carb coupling, and the evolution of the Proterozoic carbon cycle, Geology, vol.32, issue.2, pp.129-132, 2004.

I. Halevy, M. Alesker, E. M. Schuster, R. Popovitz-biro, and Y. Feldman, A key role for green rust in the Precambrian oceans and the genesis of iron formations, Nat. Geosci, vol.10, issue.2, pp.135-139, 2017.

M. Fakhraee, O. Hancisse, D. E. Canfield, S. A. Crowe, and S. Katsev, Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry, Nat. Geosci, vol.12, issue.5, pp.375-380, 2019.

S. W. Poulton and D. E. Canfield, Ferruginous conditions: a dominant feature of the ocean through Earth's history, Elements, vol.7, issue.2, pp.107-112, 2011.

C. T. Reinhard, S. V. Lalonde, and T. W. Lyons, Oxidative sulfide dissolution on the early Earth, Chem. Geol, vol.362, pp.44-55, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00933451

L. M. Och and G. A. Shields-zhou, The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling, Earth Sci. Rev, vol.110, issue.1-4, pp.25-57, 2012.

N. J. Planavsky, A. Bekker, A. Hofmann, J. D. Owens, and T. W. Lyons, Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event, Proc. Natl. Acad. Sci, vol.109, issue.45, pp.18300-18305, 2012.

A. H. Knoll, K. D. Bergmann, and J. V. Strauss, Life: the first two billion years, Philos. Trans. R. Soc. B Biol. Sci, vol.371, pp.1-13, 2016.

N. J. Butterfield, Early evolution of the Eukaryota, Palaeontology, vol.58, pp.5-17, 2014.

N. J. Butterfield, Oxygen, animals and oceanic ventilation: an alternative view, Geobiology, vol.7, issue.1, pp.1-7, 2009.

T. M. Lenton, R. A. Boyle, S. W. Poulton, G. A. Shields-zhou, and N. J. Butterfield, Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era, Nat. Geosci, vol.7, issue.4, p.257, 2014.

S. E. Peters, J. M. Husson, and J. Wilcots, The rise and fall of stromatolites in shallow marine environments, Geology, vol.45, issue.6, pp.487-490, 2017.

B. Gu, C. L. Schelske, and D. A. Hodell, Extreme 13 C enrichments in a shallow hypereutrophic lake: implications for carbon cycling, Limnol. Oceanogr, vol.49, pp.1152-1159, 2004.

Z. Zhu, J. A. Chen, and Y. Zeng, Abnormal positive ? 13 C values of carbonates in lake Caohai, southwest China, and their possible relation to lower temperature, Quatern. Int, vol.288, pp.85-93, 2013.

D. Birgel, Methanogenesis produces strong 13 C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic stromatolites, Geobiology, vol.13, pp.245-266, 2015.

B. L. Valero-garcés, A. Delgado-huertas, N. Ratto, and A. Navas, Large 13 C enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina, Earth Planet. Sci. Lett, vol.171, issue.2, pp.253-266, 1999.

A. Anoop, Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India, J. Quat. Sci, vol.28, issue.4, pp.349-359, 2013.

M. R. Talbot and K. Kelts, Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology, vol.14, issue.11, pp.912-916, 1996.

V. S. Saba, M. A. Friedrichs, D. Antoine, R. A. Armstrong, I. Asanuma et al., An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe, Biogeosciences, pp.489-503, 2011.

N. Lambrecht, Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes, Geobiology, vol.18, issue.1, pp.54-69, 2020.

D. Bastviken, J. Cole, M. Pace, and L. Tranvik, Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cycles, vol.18, issue.4, 2004.

M. Bi?i?, Aquatic and terrestrial cyanobacteria produce methane, Sci. Adv, vol.6, issue.3, p.5343, 2020.

S. Caetano-filho, P. Sansjofre, M. Ader, G. M. Paula-santos, C. Guacaneme et al., A large epeiric methanogenic Bambuì sea in the core of Gondwana supercontinent?, Geosci. Front, 2020.

, Scientific Reports |, vol.10, p.18186, 2020.

D. M. Karl and G. A. Knauer, Microbial production and particle flux in the upper 350 m of the Black Sea, Deep Sea Res. Part A Oceanogr. Res. Papers, vol.38, pp.921-942, 1991.

S. Katsev and S. A. Crowe, Organic carbon burial efficiencies in sediments: the power law of mineralization revisited, Geology, vol.43, issue.7, pp.607-610, 2015.

G. L. Cowie, J. I. Hedges, F. G. Prahl, and G. J. De-lange, Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect, Geochim. Cosmochim. Acta, vol.59, issue.1, pp.33-46, 1995.

G. A. Logan, J. M. Hayes, G. B. Hieshima, and R. E. Summons, Terminal Proterozoic reorganization of biogeochemical cycles, Nature, vol.376, issue.6535, pp.53-56, 1995.

L. B. Kuntz, T. A. Laakso, D. P. Schrag, and S. A. Crowe, Modeling the carbon cycle in Lake Matano, Geobiology, vol.13, issue.5, pp.454-461, 2015.

T. A. Laakso and D. P. Schrag, Methane in the Precambrian atmosphere, Earth Planet. Sci. Lett, vol.522, pp.48-54, 2019.

M. Lambert and J. L. Fréchette, Analytical techniques for measuring fluxes of CO 2 and CH 4 from hydroelectric reservoirs and natural water bodies, Greenhouse Gas Emissions-Fluxes and Processes, pp.37-60, 2005.

G. Abril, Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana), Global Biogeochem. Cycles, vol.19, issue.4, pp.1-16, 2005.

N. Assayag, K. Rivé, M. Ader, D. Jézéquel, and P. Agrinier, Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples, Rapid Commun. Mass Spectrom, vol.20, issue.15, pp.2243-2251, 2006.
URL : https://hal.archives-ouvertes.fr/insu-02888699

O. Lebeau, V. Busigny, C. Chaduteau, and M. Ader, Organic matter removal for the analysis of carbon and oxygen isotope compositions of siderite, Chem. Geol, vol.372, pp.54-61, 2014.

A. Galès, S. Triplet, T. Geoffroy, C. Roques, C. Carré et al., Control of the pH for marine microalgae polycultures: A key point of CO2 fixation improvement in intensive cultures, J. CO2 Util, vol.38, pp.187-193, 2020.

P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Blackwell Science, 1997.

G. M. Silsbe, S. Y. Malkin, and . Package, Phytoplankton Production Tools. CRAN library repository, 2015.

P. H. Eilers and J. C. Peeters, A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton, Ecol. Model, vol.42, issue.3-4, pp.199-215, 1988.

J. T. Kirk, Light and Photosynthesis in Aquatic Environments, 2010.

R. A. Berner and . Early-diagenesis, A Theoretical Approach, 1980.

V. P. Milesi, Early diagenesis of lacustrine carbonates in volcanic settings: the role of magmatic CO 2, ACS Earth Space Chem, vol.4, issue.3, pp.363-378, 2020.
URL : https://hal.archives-ouvertes.fr/insu-02499121