Dendro-anthracological tools applied to Scots type pine forests exploitation as fuel during the Mesolithic-Neolithic transition in the southern central pre-Pyrenees (Spain)

Marta Alcolea, Alexa Dufraisse, María Royo, Carlos Mazo, Martin de Luis, Luis A. Longares, Pilar Utrilla, Ramón Fábregas

To cite this version:
Marta Alcolea, Alexa Dufraisse, María Royo, Carlos Mazo, Martin de Luis, et al.. Dendro-anthracological tools applied to Scots type pine forests exploitation as fuel during the Mesolithic-Neolithic transition in the southern central pre-Pyrenees (Spain). Quaternary International, Elsevier, 2020, 10.1016/j.quaint.2020.10.029. mnhn-03008152

HAL Id: mnhn-03008152
https://hal-mnhn.archives-ouvertes.fr/mnhn-03008152
Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dendro-anthracological tools applied to Scots type pine forests exploitation as fuel during the Mesolithic-Neolithic transition in the southern central pre-Pyrenees (Spain)

Marta Alcolea, Alexa Dufraisse, María Royo, Carlos Mazo, Martín de Luis, Luis A. Longares, Pilar Utrilla, Ramón Fábregas

PII: S1040-6182(20)30655-8
DOI: https://doi.org/10.1016/j.quaint.2020.10.029
Reference: JQI 8574

To appear in: Quaternary International

Received Date: 7 July 2020
Revised Date: 11 October 2020
Accepted Date: 12 October 2020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.
DENDRO-ANTHRACOLOGICAL TOOLS APPLIED TO SCOTS TYPE PINE
FORESTS EXPLOITATION AS FUEL DURING THE MESOLITHIC-
NEOLITHIC TRANSITION IN THE SOUTHERN CENTRAL PRE-PYRENEES
(SPAIN).

Marta Alcoleaa,b,c, Alexa Dufraisseb, María Royod, Carlos Mazoe, Martín de Luisd,
Luis A. Longaresd, Pilar Utrillaa, Ramón Fábregasa

a GEPN-AAT Research Group, Universidade de Santiago de Compostela, Praza da
Universidade 1, 15782, Santiago de Compostela, Spain.
b CNRS/MNHN, UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques et
Environnements, Sorbonne Université, CP 56, 55 rue Buffon, 75005 Paris, France.
c ISEM, CNRS, IRD, EPHE, Université de Montpellier CC 065, Place Eugène Bataillon
34095 Cedex 5 Montpellier, France.
d Departamento de Geografía. Universidad de Zaragoza, IUCA, C/ Pedro Cerbuna 12,
50009, Zaragoza, Spain.
e Departamento de Ciencias de la Antigüedad. Universidad de Zaragoza, IUCA, C/
Pedro Cerbuna 12, 50009, Zaragoza, Spain.

Corresponding author: Marta Alcolea (martaalcoleagracia@gmail.com)

Keywords: \textit{Pinus sylvestris} tp., Early-Middle Holocene, firewood procurement,
dendro-anthracology, anthraco-typology, charcoal analyses, referential datasets, NE
Iberia.

Abstract

This work focuses on the reconstruction of fuelwood procurement during the
Mesolithic-Neolithic transition in the southern central Pre-Pyrenees (Spain). The study
combines wood charcoal identification with the application of dendro-anthracological
approaches in the archaeological sequence of Esplugón (9.4-6.8 kyr cal BP)
(Sabiñanigo, Huesca). Scots type pine (\textit{Pinus sylvestris} tp.) reaches in this record
around 90\% of exploited firewood in line with its abundance in the inner Iberia
mountainous areas during the onset of the Holocene. The classification of pine wood
fragments in anthraco-groups is based on the combination of different dendro-
anthracological tools: i) pith location tool and wood diameter estimation based on the
trigonometric method tool (ADmodel), ii) the study of growth rate based on the annual
tree-ring width measurements, and iii) a modern dendrological dataset. There are
hardly any differences observed in firewood procurement between the last hunter-
gatherers and the first farmers in the long sequences from rock-shelters with recurrent
human occupations. First results from this site point to the exploitation of whole trees
but a high use of small pine branches probably from the gathering of branch shedding.
1. INTRODUCTION

This work constitutes a holistic approach to Early-Middle Holocene archaeological wood charcoal assemblages from the southern central Pre-Pyrenees (Spain). Some of these assemblages are characterized by a very homogeneous composition, in which Scots type pine wood (*Pinus sylvestris* tp.) always reaches very high values, > 70%, despite the taxonomic diversity of the anthracological samples. Scots type pines (*Pinus sylvestris* tp.) have played an important role in Mediterranean vegetation since the Pleistocene which is reflected in their ubiquity presence in several wood charcoal assemblages of southern Europe (Alcolea, 2015; Alcolea et al., 2017a; 2017b; Allué et al., 2012, 2017a; 2017b; 2018; Allué and Mas, 2020; Aura et al., 2005; Badal et al., 2012a, 2012b; Badal and Martínez-Varea, 2018; Carrión et al., 2008; 2019; Mazo and Alcolea, 2019; Montes et al., 2016; Rubiales et al., 2010; Théry-Parisot, 2001; 2002; Théry-Parisot and Thiébault, 2005; Théry-Parisot et al., 2016; 2018; Vidal-Matutano, 2017; Vidal-Matutano et al., 2015, 2017, 2018).

Pinus sylvestris L. forests show a wider world distribution area nowadays although in the Iberian Peninsula they are now restricted to the highest elevations in mountain areas (Costa et al., 2001). They are accompanied by *Pinus nigra* subsp. *salzmannii* (Dunal) Franco in the lowlands and *Pinus mugo* subsp. *uncinata* (Ramond ex DC.) that dominates the highlands. Unfortunately, these species can hardly be distinguished on the basis of their microscopic wood anatomy, so they are grouped under the taxon *Pinus sylvestris* tp. which refers to all these cryophilous pines that abound in the Mediterranean mountains.

The abundance of *Pinus sylvestris* tp. wood in certain archaeological records for thousands of years implies an evident limitation in the interpretation of the archaeological record from the point of view of standard wood charcoal analysis. However, the large amount of available fragments from the same taxon also presents an opportunity to apply innovative anthracological and dendro-anthracological tools to the study of these anthracological contexts (Allué et al., 2009; Allué and Mas, 2020; Caruso-Fermé and Théry-Parisot, 2018; Caruso-Fermé et al., 2013; Dufraisse, 2006; Dufraisse and García-Martínez, 2011; Dufraisse et al., 2017; 2020; García-Martínez and...
In this paper, the previously unpublished wood charcoal analysis of the entire archaeological sequence of the Esplugón site (Huesca, NE Iberia) is presented in its regional context. In addition, we introduce the quantitative study of the wood charcoal alterations, as well as the first results of the application of dendro-anthracological tools to wood charcoal fragments, which permit reconstructing which parts of the plants were exploited. For the latter, it has been necessary to create a specific modern dendrological dataset for Scots type pines (*Pinus sylvestris* tp.) in the south central Pre-Pyrenees. All these approaches enable a better global understanding of forest management by the human inhabitants of the site. The archaeological sequence of Esplugón, including successive Mesolithic and Neolithic occupations, allows a comparison of fuelwood procurement between the last hunter-gatherers and the first farmers in this region. This work constitutes a starting point for future wood charcoal studies in Pleistocene and Holocene sequences from NE Iberia.

2. REGIONAL SETTING AND SITE DESCRIPTION

The southern central Pre-Pyrenees represent a key region for understanding the Mesolithic-Neolithic transition in NE Iberia. The Pyrenean foothills, or Pre-Pyrenees (450-950 m asl), comprise human occupations in rock-shelters and caves, some of them containing long sequences of prehistoric occupation, such as Esplugón, Forcas, Artusia, Aizpea and Arba de Biel sites (Utrilla et al., 2016, Obón et al., 2019; Utrilla and Mazo, 2014; García-Martínez de Lagrán et al, 2017; Barandiarán and Cava, 2001; Montes et al., 2016; Laborda, 2019) (Figure 1). All sites have many similarities as they contain recurrent and probably short-term occupations and they are strategically located over the valley, controlling both human and prey movements. Wood charcoal analysis has been recently performed in all of them (Zapata, 2001; Alcolea, 2015; Montes et al., 2016; García-Martínez de Lagrán et al, 2017).

Esplugón is the largest rock-shelter in the southern central Pyrenees known so far for this chrono-cultural period (Figure 2). It is located in the middle transverse corridor of the Guarga valley (Huesca, NE Iberia) between the Pre-Pyrenees and the Pyrenees. The description of six Mesolithic and Neolithic archaeological layers makes it a reference...
Seven archaeological layers have been identified (numbered 1-7 from top to bottom) organized in 4 chrono-cultural stages of prehistoric occupation (Figure 3):

- **Stage 1. Layer 1.** A partially disturbed Chalcolithic layer, which contained both Chalcolithic and historical materials.

- **Stage 2. Layers 2 and 3 sup.** An Early Neolithic (EN) occupation, in which geometric microliths with abrupt retouching was recovered, as well as occasional bone tools and pottery fragments with incised and cardial decorations.

- **Stage 3. Layers 3 inf. and 4.** A Late Mesolithic (LM) or Geometric Mesolithic occupation, in which a rich lithic assemblage of geometric microliths was recovered, with triangles in the earlier phases and later on trapezes.

- **Stage 4. Layers 5 and 6.** An Early Mesolithic (EM) occupation which still lacks an accurate chrono-cultural definition. Although the occasional lithic materials recovered seem to fit with a Notches and Denticulate Mesolithic (layer 5) and a Microblade Epipaleolithic (layer 6), the available radiocarbon dates do not support the Epipalaeolithic attribution.

14 radiocarbon dates (Table 1 and Figure 4) place the occupation of the site (excluding Stage 1) between 9.4 and 6.8 ka cal BP (Obón et al., 2019; Laborda, 2019). The Early Mesolithic (EM) stage occurs during the last millennium of the Early Holocene (9.4-8.5 ka cal BP). The start of the Geometric Mesolithic or Late Mesolithic (LM) stage coincides with the 8.4 and 8.2 arid events that give rise to the Middle Holocene in the region (8.5-7.5 ka cal BP). Finally, the Early Neolithic (EN) stage occurs during the Middle Holocene (7.3-6.8 ka cal BP).

Archaeological materials recovered at the site as well as the preliminary archaeozoological results suggest that hunting was the main focus of the settlement throughout the excavated sequence. Recurrent short-term occupations are proposed for the Mesolithic while more or less stable, long-term occupations involving various activities (scraping, drilling, mowing) besides hunting, have been proposed for the Neolithic (Utrilla et al., 2016; Obón et al., 2019). In any case, the hunted species are characteristic of a forested environment dominated by red deer (*Cervus elaphus*), roe deer (*Capreolus capreolus*), and wild boar (*Sus scrofa*) (Obón et al., 2019). Despite the presence of some domestic animals only in layer 2, neither traces related to livestock...
sheltering and feeding nor storage structures have been found so far at the site (Laborda, 2019).

Esolugón is located at 800 m asl. This area is currently characterised by a continental Mediterranean climate with long, dry summers, an average annual temperature between 12°C and 14°C, and 500 mm of annual precipitation. The vegetation is characteristic of the transitional zone between the meso-Mediterranean and the oro-Mediterranean biogeographic zones (Rivas Martínez, 1982). Present-day vegetation is influenced by the altitudinal gradient, relief, calcareous lithology and the high levels of human impact. Vegetation around the site is dominated by degraded forest of deciduous Quercus (Quercus faginea Lam. and Quercus cerrioides Wilk & Costa), Scots pine (Pinus sylvestris L.) and mainly extensive plantations of Austrian pine (Pinus nigra subsp. laricio Maire) grow throughout the valley. Boxwood (Buxus sempervirens L.), hawthorn (Crataegus monogyna Jacq.), dogwood (Cornus sanguinea L.), and brooms (Echinospartum horridum (Vahl) Rothm), grow abundantly in the scrubland and forest edges. The proximity of the Guarga river defines the ample presence of riparian vegetation dominated by black poplar (Populus nigra L.) and willow (Salix eleagnos Scop.).

3. Materials and methods

3.1. Materials.
Archaeological works started in 2009. Specific strategies of sampling and recovery for archaeobotanical remains have been followed at Esplugón site during the 2012, 2013 and 2017 fieldwork seasons. Archaeological layers are characterized by high density and good preservation of charred wood remains. Hand-picking of visible charcoal remains found during fieldwork was accompanied by the wet sieving of all the excavated sediment through a 2-1 mm mesh. Also, flotation tests with a 0.5-0.25 mm mesh of 20 litres of sediment per square meter and archaeological layer were performed by M. Alcolea in the Laboratory of Prehistory of the University of Zaragoza in 2018. No carpological remains have been found so far in the sampled archaeological deposit. Charred wood identified in this work corresponds to scattered charcoal in the sediment from samples recovered by hand-picking, wet sieving and flotation. Scattered charcoal is the result of consecutive combustion events reflecting successive collections of
firewood (Chabal, 1997). It constitutes a valuable source of information about the
surrounding vegetation of the site and the activities of human groups in the past (Chabal
et al., 1999; Théry-Parisot et al., 2010).

3.2.1. Wood charcoal analyses.

Wood charcoal fragments were analysed following the standard methods in
anthracology (Vernet, 1973). For the taxonomic identification the wood anatomical
features of each fragment were observed along the three anatomical planes under
magnifications between x50 and x600, using an incident light dark/bright field Leica
DM2700M microscope at the University of Zaragoza (Spain). Botanical identifications
were made by reference to wood anatomy atlases (Schweingruber, 1990, García Esteban
et al., 2003) and modern carbonized wood reference specimens. Nomenclature follows
the guidelines in *Tela Botanica* (https://www.tela-botanica.org/). No significant
differences in the number of identified taxa have been documented from the screened
and floated samples.

3.2.2. Charcoal preservation and condition of wood.

Charcoal taphonomy in anthracological research provide additional information about
plant growth, wood-gathering strategies and combustion and post-deposition processes
(Marguerie and Hunot, 2007; Théry-Parisot et al., 2010). In this study 4 relevant
features were recorded as absent or present: cell collapse, compression wood, radial
cracks and vitrification (Braadbaart and Poole, 2008; McParland et al., 2010; Moskal
del Hoyo et al., 2010; Théry-Parisot and Henry, 2012; Henry and Théry-Parisot, 2014;
Vidal-Matutano et al., 2017; Caruso-Fermé and Théry-Parisot, 2018; Allué and Mas,
2020; Courty et al., 2020). These features in archaeological charcoals provide relevant
information about the condition of the procured firewood as well as some conditions of
the combustion process. Preservation factors also actually affects wood charcoal
structure preservation and therefore the possibilities in the application of dendro-
anthracological techniques.

3.2.3. Dendro-anthracological techniques.
Dendro-anthracological tools allow measuring dendro-anthracological parameters based on morpho-anatomical criteria (Table 2). Dendro-anthracological techniques have been applied on selected *Pinus sylvestris* tp. wood charcoal fragments with the aid of a multizoom microscope (Nikon AZ100) that allows magnification factors from x4 to x500 and the NIS Element image analysis software. The measurements are based on the distance and the angle between two ligneous rays. They were obtained by using a semi-automatic system based on 4 landmarks integrated in the Nikon NIS Elements software. All measurements are taken in transverse (or cross) plane. The selection of fragments was based on two criteria: size and preservation status. In terms of size, a minimum of 4 mm² is required in transverse (or cross) plane. Regarding the preservation status, the microscopic wood anatomical features must not be deformed, particularly the ligneous rays and the growth ring boundaries.

3.2.3.1. *The pith location tool and wood diameter estimation.*

Pinus sylvestris tp. is an appropriate taxon to apply dendro-anthracological techniques. Regarding microscopic wood anatomy features, the presence of visible ligneous rays allow measuring the charcoal pith distance by applying the trigonometric method (Dufraisse and García-Martínez, 2011; Paradis-Grenouillet et al., 2013). It is also important that a modern reference dataset is available for measuring the caliber of pines in the framework of the DENDRAC project (http://dendrac.mnhn.fr/) (Dufraisse et al., 2020). The pith location tool is used to measure the distance between the charcoal fragment and the theoretical location of the missing pith. This tool is based on measurements of the angle and the distance between two ligneous rays and the application of correction factors (Dufraisse and García-Martínez, 2011; Dufraisse et al., 2020). The angle must be > 2 degrees and the distance > 2 mm for reducing the margin of error and improving results in dendro-anthracological applications (Dufraisse et al., 2017; 2020). The values were ordered into diameter classes chosen to be compatible with the standards used in dendrometrical plans by foresters: 4 cm, 7 cm and 20 cm but adding some wood cuts. For conifers diameter classes chosen are [0-2] cm, [2-4] cm, [4-7] cm, [7-10] cm, [10-14] cm, [14-20] cm and >20 cm (Dufraisse et al., 2017).

3.2.3.2. *The Analysis Diameter model (ADmodel).*

The Analysis Diameter model has been developed as a tool dedicated to recompose unburnt wood diameter (UWD) in terms of volume based on the distribution of diameter
classes obtained with the pith estimation tool (Dufraisse et al., 2017). It was developed, based on the fact (i) burnt, wood undergoes both mass loss and charcoal fragmentation and (ii) a trunk is biologically considered to be a stack of hollow cones whose thickness corresponds to the amplitude of the diameter classes (Dufraisse, 2006; Dufraisse and García-Martínez, 2011). A calculation table provides the respective distribution of these cones in terms of volume (Dufraisse et al., 2020). This model does not reconstruct the original quantity or volume of burnt wood (Dufraisse and García-Martínez, 2011, Dufraisse et al., 2017).

3.2.3.3. Tree-ring analysis and growth rate.

Pinus sylvestris tp. wood is characterized in the transverse (or cross) plane by distinct growth ring boundaries (occasionally generating false growth rings in samples from lowlands) and generally abrupt transition from early- (EW) to latewood (LW) (Schweingruber, 1990; Schoch et al., 2004). It makes *Pinus sylvestris* tp. an appropriate taxon for measuring tree-ring and EW width. Both has been measured in mm with the NIS Element image analysis software (Nikon AZ100). Correction factors have been applied to reverse shrinkage effect in the tree-ring width during charring (García-Martínez and Dufraisse, 2012). The results were plotted by R software (R Core Team, 2017).

In order to establish a discriminating threshold between slow growth rate and fast growth rate we have built a modern dendrological reference dataset in the southern central Pyrenees. Trunks and branches of three *Pinus sylvestris* L. (and three *Pinus nigra* subsp. *laricio* Maire) adult trees between 40 and 50 years old from the Station 1, called Secorún (UTM 30T 734715 469813, 1047 masl), close to Esplugón, were sampled (Figure 1). Our goal was to know the intra-individual variability and establish the existence of different growth patterns between trunk and branches within the same tree. Trunk core discs were sampled at breast height, 1.30 m above ground, as is standard in dendrochronology. Apical trunks are sampled at an average height of 10.5 m at which they have a similar diameter to the sampled branches. Four primary branches regularly located along the trunk height have been sampled and measured for each tree. The samples have been measured to the nearest 0.01 mm with the TSAP-Win program and LINTAB™ (Rinntech, Heidelberg, Germany) (Rinn, 2011).

3.2.4. Anthraco-typological classification
The combination of these dendro-anthracological parameters permits the classification of fragments in four anthraco-groups based on the relationship between the estimated minimum diameter and the growth rate (Dufraisse et al., 2017). Following the foresters’ diameter ranking, values <7 cm were considered to represent branches, and values >7 cm were considered mature or young trunks. This is the threshold used in this work even though in the case of archaeological charcoal fragments, projected diameters <7 cm could correspond to both branches and young individuals (Picornell-Gelabert and Dufraisse, 2018). Regarding growth rate, the threshold between slow growth and fast growth in this work has been established in 1 mm based on the modern dendrological reference dataset created at the Station 1 Secorún (Figure 5). An anthraco-typological key to sort *Pinus sylvestris* tp. archaeological charcoal fragments into 4 anthraco-groups is proposed (Figure 6) following Dufraisse et al., 2017 for deciduous oak. Following these assumptions, the anthraco-group 1 corresponds theoretically to the exploitation of branches while anthraco-groups 2, 3 and 4 represent to the exploitation of trunks. The group 2 would correspond to the inner part of the trunk while groups 3 and 4 to the outer part (see also Picornell-Gelabert et al., same volume).

4. Results

4.1. Taxonomic diversity.

We have studied 1,480 wood charcoal fragments from 6 archaeological layers (Table 3). The presence of 7 taxa has been documented: ash (*Fraxinus* sp.), juniper (*Juniperus* sp.), Scots pine type (*Pinus sylvestris* tp.), deciduous oak (*Quercus* sp. deciduous), holm oak (*Quercus* sp. evergreen), and thorny shrubs belonging to the Rosaceae family (Rosaceae/Maloideae and *Prunus* sp.). The reported percentages of Scots pine type wood vary between 75 and 100% of the identified fragments in the different archaeological layers (Figure 7). Based on the total number of determined fragments at the site, pine reaches 91%, followed by oak that reaches 6.7% while the remaining taxa comprise c. 2.3%. The high frequency of pine is common in anthracological assemblages from rockshelters in the region during the entire timespan covered by the Esplugón sampled stratigraphy.
4.2. Condition of wood.

Relevant features recorded in this study: cell collapse, compression wood, radial cracks and vitrification, entail high percentages in the anthropological assemblage of Esplugón (Table 4 and Figure 8). They are common alterations in archaeological charcoals.

Cell collapse is commonly associated with decayed or rotten wood caused by fungi and xylophagous insects (Moskal del Hoyo et al., 2010; Henry and Théry-Parisot, 2014; Vidal-Matutano et al., 2017) or chemical and physical alterations that affect deadwood (Allué and Mas, 2020). A high number of fragments shows signs of fungal degradation, affecting 34.9-58.6% of pine charcoal fragments. This alteration inhibits the application of dendro-anthropological techniques to fragments in which an important part of the transverse surface is affected by this parameter.

Compression wood is associated with a loss of verticality in stem growth. In mountain environments, it can affect both branches and trunks growing on acute slopes, thus it cannot be used as a discriminating factor. Reaction wood reaches from 25.2 to 69.6% of the pine charcoal fragments. These fragments have been omitted from dendro-anthropological analysis even though correction factors may reduce the influence of off-centred piths (Dufraisse et al., 2017; 2020).

The presence of radial cracks on the transverse plane affects 5.6-20% of pine charcoal fragments. They are very common in charred wood because of the loss of volatile compounds during the combustion process. Proposed as evidence of the use of green wood as fuel, it has been demonstrated that the occurrence of radial cracks is not correlated with moisture content (Théry-Parisot and Henry, 2012; Caruso-Fermé and Théry-Parisot, 2018) being probably important other volatile compounds, e.g. resins, which are common in Scots pines type. Its presence could affect and deform ray distance and angle. Heavily affected pine charcoal fragments have been also omitted from dendro-anthropological analysis.

Finally, vitrification affects 3.2-24.4% of pine charcoal fragments. It is the main cause of the high number of fragments that could not be determined (classified as undeterminable; see table 3). Although in the current state of the research the causes of this feature are not known (Braadbaart and Poole, 2008; McParland et al., 2010; Courty et al., 2020), it is related to the combustion process. It is especially usual in conifers, probably associated with some specific compounds as resins. The high presence of
reaction wood, which increases the lignin in tracheid cell walls, a thermoplastic compound, could also favour the vitrification of wood (Alcolea, 2017).

4.3. Minimum calibres of exploited stems.

Charcoal preservation and condition of wood have strongly conditioned the application of dendrometric tools. Although only 199 pine charcoal fragments met special requirements of size and preservation status, there are evenly spread across the different phases (Table 5). Both 2 Mesolithic (n=155) and Neolithic (n=44) stages are well-represented in the subsample. Trigonometric method has been applied to estimate minimum calibres of exploited firewood. Diameter classes for each stage have been established on the base of minimum diameters of each fragment using pith location tool and wood diameter estimation (Table 5). The UDW has been recomposed using the Analysis Diameter model (ADmodel) (available in https://dendrac.mnhn.fr/spip.php?article237) (Dufraisse et al., 2020).

At the Esplugón site, the exploitation of small calibres predominates throughout the entire archaeological sequence. Minimum diameter classes between 4 and 7 cm predominate during the 2 Mesolithic stages (EM and LM). During the Early Neolithic (EN) this diameter class diminishes while the diameter classes between 2 and 4 cm and 7 and 10 cm gain importance. Above 10 cm of diameter few fragments have been documented (Table 5). Recomposed percentages (AD%) reinforce the observed tendency.

Usually, the diameter classes <7 cm correspond to branches and/or the inner part of the trunks, and the diameter classes >7 cm correspond to the outer part of the trunks (Deleuze et al., 2014). This assertion was tested and confirmed on *Pinus halepensis* (Picornell et al, same volume). However, the class between 7 and 10 cm of diameter, considered as a transition, is difficult to classify in this scheme. To discriminate the parts of the exploited stems it is necessary to combine minimum calibres with the growth rate of tree-rings.

4.4. Growth rate.

Growth rate has been calculated in 199 pine charcoal fragments by measuring growth ring width. A total of 1,788 growth ring width has been measured and the average value
has been calculated to obtain growth rate of each charcoal fragment. Results show calibrated values after applying correction factors (García-Martínez and Dufraisse, 2012).

No major differences in growth rate have been documented among the different stages (Figure 9). Organizing growth ring width by diameter classes it can be observed that average values are higher in the diameter classes >10 cm. Wider growth rings are documented in the 2 to 4 and 4 to 7 cm diameter classes but they always constitute outlier values (Figure 10).

The results of dendrological analysis of the modern dendrological reference dataset from Secorún show clear intra-individual differences in growth rate between trunks and branches from the same tree and are reproduced in all sampled individuals (Figure 5). According to these data, the threshold between slow and fast growth rate has been established in 1 mm. Archaeological pine charcoal fragments that present average growth ring width values < 1 mm are considered as slow growth rate and those that present values > 1 mm, as fast growth rate.

4.5. Anthraco-typological classification: the exploited parts of plants.

Anthraco-typological classification of the studied anthracological assemblage combines the estimation of the minimum calibres and the growth rate (Dufraisse et al., 2017). The 199 pine wood charcoal fragments have been classified in 4 groups (Table 6). The anthraco-type 1, that theoretically correspond to branches, has the largest number of fragments in the 3 studied stages, reaching almost 80% during the Early Mesolithic (EM) and 70% during the Late Mesolithic (LM) and Early Neolithic (EN). The anthraco-types 2, 3 and 4, that theoretically correspond to different parts of the trunk, represent lower percentages, reaching 20% during the Early Mesolithic (EM) and almost 30% during the Late Mesolithic (LM) and Early Neolithic (EN).

5. Firewood procurement in the southern central Pre-Pyrenees during the Early-Middle Holocene

5.1. Floristic composition of the forest: taxonomic analyses.

5.1.1. Early Mesolithic (9.4-8.5 kyr cal BP)
During the Early Mesolithic occupation in Esplugón, the *Pinus sylvestris* tp. is the preferred wood for fuel with values reaching up to 90%. Even though extremely high values of conifers persist at the onset of the Holocene in the southern central Pyrenees in both lowland and high altitudes, pollen lake records suggest the rapid spread of mesophytes in the low montane bioclimatic zone, mainly deciduous *Quercus*, after ca. 9.5 kyr cal BP due to increases in temperature, warmer summers and an increase in water availability (Pérez-Sanz, 2014; González-Sampériz et al., 2017). These are present in the anthracological record of Esplugón in low frequencies. Deciduous and evergreen *Quercus* hardly represent 3% of identified wood charcoal fragments in layer 6 and 7% in layer 5. Shrubby taxa typical of forest edges (*Juniperus* sp., *Prunus* sp., Rosaceae/Maloideae) complete the list also reaching low values in the layer 6 and disappearing in layer 5.

Other Pyrenean anthracological sequences show similar patterns: *Pinus sylvestris* tp. prevails in low montane assemblages until ca. 8.5 kyr cal BP as indicated by the anthracological assemblages from Forcas (Alcolea, 2015), Artusia (García-Martínez de Lagrán, 2017) and the Arba de Biel sites (Montes et al., 2016). At the lowlands, Scots type pine forests are replaced by thermophilous Mediterranean pines from ca. 8.7 kyr cal BP (Alcolea et al., 2017a).

5.1.2. Late Mesolithic (8.5-7.5 kyr cal BP)

After 8.2 kyr cal BP pollen lake records indicate that semi-deciduous and evergreen* Quercus* replaced mesophytes in the lowlands and low montane (González-Sampériz et al., 2017). Simultaneously, these deciduous forests replaced pinewoods also in the high montane and subalpine bioclimatic zones (Plà and Catalán, 2005; González-Sampériz et al., 2005; Pérez-Sanz et al., 2013) indicating a relevant increase in winter temperatures and a shift in the precipitation regime with a more evenly distributed rainfall (Magny et al., 2002; Morellón et al., 2009).

Pinus sylvestris tp. persists as the most consumed wood for fuel in Esplugón during its Late Mesolithic occupation in layers 4 and 3 inf. between 8.5 and 7.5 kyr cal BP. Accompanying taxa are basically the same as in the previous period and they do not reach 10% of wood charcoal fragments. The only novelty is the presence of riparian
vegetation represented by a single charcoal fragment of ash (*Fraxinus* sp.). This resilient tendency of low montane pine forests in the southern central Pyrenees is also supported by the anthracological records of Forcas (Alcolea, 2015) and Arba de Biel sites (Montes et al., 2016). On the contrary, the human use of widespread deciduous forest is well-documented in south eastern Pyrenean deposits (Zapata and Peña-Chocarro, 2005; Ruíz-Alonso and Zapata, 2017).

5.1.3. Early Neolithic (7.3-6.8 kyr cal BP)

Despite the chronological gap in the sequence suggested by radiocarbon dating (7.5-7.3 kyr cal BP) *Pinus sylvestris* tp. continues being the most consumed wood for fuel in Esplugón, reaching up to 90% in layer 3 sup. and 75% in layer 2. On the contrary, *Pinus sylvestris* tp. has completely disappeared in the eastern Pyrenean sequences at 7.3 kyr cal BP, mainly replaced by deciduous *Quercus* and yew (*Taxus baccata*) accompanied by shrubby taxa (Ruíz-Alonso and Zapata, 2017). The Neolithic deposit of Esplugón just start showing a trend towards the use of deciduous taxa in layer 2, dated to 6.8 kyr cal BP, where deciduous *Quercus* reaches almost 20% accompanied by all the aforementioned taxa. Resilience of Scots type pinewoods at Esplugón is supported by other wood charcoal analyses in southern central Pyrenees from the low montane (Heinz y Vernet, 1995; Alcolea, 2015; Alcolea et al., 2017b; Montes et al., 2016) to the subalpine bioclimatic zones (Obea et al., 2011; Obea, 2014) at least until 6 kyr cal BP. The limited presence of other taxa in the anthracological record could be related to the structure of pine forests with low shrubby undergrowth (Allué et al., 2018).

5.2. Structure of the forest: dendro-anthracological insights.

5.2.1. The exploited parts of plants.

Pinus sylvestris tp. is the main taxon exploited for fuel throughout the archaeological sequence of Esplugón and also in other short-term human occupations in rockshelters, like Forcas (Alcolea, 2016) and the Arba de Biel sites (Montes et al., 2016) suggesting that this woody taxon is the most available in the immediate vicinity of the sites. Even though the resilience of Scots type pine forests has been proposed in some inland regions of Mediterranean Iberia until ca. 7.7 kyr cal BP (Rubiales et al., 2010; Aranbarri et al., 2014) or even during the whole Middle Holocene (8.2-4.2 kyr cal BP) (Franco...
Múgica et al., 2001; 2005) due to the delayed onset of the interglacial conditions based
on high continentality, water shortage and absence of well-developed soil (Carrión et
al., 2010), regional pollen data in the southern central Pyrenees point to a retreat of
Scots type pine forests from 9.5 kyr cal BP, more evident after 7.3 kyr cal BP
(González-Sampériz et al., 2017). Wood charcoal analysis at Chaves (7.6-7.0 kyr cal
BP) reveals the use of a broad spectrum of woody taxa as expected in a long-term
settlement where diversified human activities took place (Utrilla and Laborda, 2018).
Although Scots type pine is the most consumed taxon it only reaches 30% at level Ib
(7.6-7.3 kyr cal BP) (Alcolea et al., 2017b).

Regarding the parts of exploited plants, no big differences have been documented
between the different stages of human occupation. The use of branches, between 70-
80%, prevails over the use of trunks, between 20-30% throughout the entire
archaeological sequence (Figure 11). The arrival of the Neolithic does not introduce a
change in forest management strategies. This is consistent with the documented uses of
the rockshelter. The main human activity is always the hunting of the forest wild species
like roe deer (*Capreolus capreolus*), red deer (*Cervus elaphus*) and wild boar (*Sus
scrofa*) (Obón et al., 2019). Domestic animals are restricted to layer 2 and neither
storage structures nor stabling layers implying changes in the site function have been
found (Laborda, 2019).

5.2.2. Scots type pine forests exploitation as fuel.

The three native species of cryophilous montane pines growing in NE Iberia are
normally grouped in the taxon *Pinus sylvestris* tp. Montane Iberian pines include *Pinus
salzmannii (Dunal) Franco. Theoretically they grow nowadays at different altitudes in
NE Iberia: *Pinus nigra* between 500 and 800 masl, *Pinus sylvestris* between 800 and
1700 m a.s.l. and *Pinus uncinata* above 1800 masl (Costa et al., 2001), but usually they
overlap biogeographically and can interbreed (Quézel and Médail, 2003). These trees do
not show differences in wood anatomy allowing to identify each of them (Greguss,
1955; Schweingruber, 1990) so its past distribution at species level is not well-known
(Roiron et al., 2013 Allué et al., 2018). Likewise, is not possible to know if our deposits
contain more than one species of Scots type pine. In any case, they share
biogeographical parameters and tree architecture.

We propose that the architecture of Scots type pines strongly influences their use as
firewood. The architecture of the tree is characteristic of each species and allows to
understand its growth strategy and occupation of the space. Scots type pine trees present
a monopodial structure composed of a single stem or trunk that reaches up to thirty
metres. The trunk is generally straight but it can present alterations due to the ecological
conditions of its growth (strong winds, the weight of the snow, the extreme dryness or
slope angle). The primary branches grow in polycyclic crowns, formed annually at the
same level around the trunk parallel to each other and displaying similar calibres. These
trees are characterized by a strong apical dominance, meaning that the branches develop
more slowly than the trunk (Riou-Nivert, 2001).

Scots type pine forests have a pyramidal or conical shape when young, which
nevertheless changes with age. The silhouette of adult trees can vary depending on
whether they grow isolated or in groups (Figure 12). When they grow isolated generally
green branches reach the foot of the tree. When they grow in groups, these trees exert
competition over each other at two levels: (i) in the soil, which affects their radical
underground system, and (ii) in the air, which affects their radical air system, that is, the
branches. In the first case, they "run away" from each other, moving as far as possible to
take advantage of soil moisture, giving rise in general to open forests. In the second
case, they “run away” seeking to reach a greater height to have more access to light. The
growth in population provides a lateral shelter, that results in thinner branches and a
reduced growth in diameter of the trunk (Riou-Nivert, 2001). In this case, the lower
branches under cover usually die due to lack of light. There is very little physiological
connection between branches and trunk (Shigo et al., 1987). When they are no longer
functional, a resinous partition isolates them to protect the trunk from infections. The
branch becomes parasitic and stops participating in the life of the tree. When the process
of decomposition by microorganisms is advanced the branch falls according to the
phenomenon known as branch shedding (or natural pruning). This observation is
supported by the high percentages of decayed wood documented in the record (Figure
8), which are associated with the use of deadwood as fuel (Allué et al., 2009; Henry and
Thèry-Parisot, 2014; Vidal Matutano et al., 2017).Different palaeoenvironmental and
cultural factors has been previously proposed in the preferential use of *Pinus sylvestris*
tp. as fuelwood by European hunter-gatherer groups. The significant mobility of human
groups, resulting in seasonal occupations of the sites, and a relatively limited tool kit
would undoubtedly have had an impact on firewood procurement. A marked preference
for deadwood procurement optimally ensures the supply during short-term occupations
while green wood, which must be cut and dried over several months, is more suited to
long-term occupations. Combustion properties largely depend on the condition (dead or
living, dry or green) and morphological (size and diameter) state of wood more than
species (Allué et al., 2009; Henry and Théry-Parisot, 2014; Théry-Parisot et al., 2016;
2018; Vidal Matutano et al., 2017). Also, specific functions of the sites could influence
choices underlying the collection of wood, as is the case of Chauvet-Pont d’Arc, where
Scots pine type is selected to provide light and produce charcoal for use in rockart
motifs (Théry-Parisot and Thiebault, 2005, Théry-Parisot et al., 2018).

Our hypothesis is that the selection of Scots type pine wood in Mesolithic-Neolithic
transition Pyrenean sequences could be related to its capacity to produce a large amount
of dead biomass, almost dry, easy to gather, and more or less regular in size and
diameter, resulting in a certain overrepresentation of this taxon in seasonal or temporary
settlements in rockshelters located in the low montane southern central Pyrenees (Figure
13). Apart from small calibre branches, probably related to the branch shedding of
defunct branches, the discrete presence of the largest diameter classes suggests the
consumption of trunks as well (Figure 14). This does not necessarily imply that live
trees were felled for firewood use. Scots type pine forests tend to alternate live trees
with dead trees (Costa et al., 2001), so dry trunks that remain standing for years could
be easily cut down by prehistoric groups. Forest expansion attested from ca. 9.5 kyr cal
BP and changes in fire regimes (González-Sampériz, 2004; Gil-Romera et al., 2014)
could have resulted in a higher biomass availability.

6. Conclusions and perspectives

Summing up, wood charcoal analysis at Esplugón reveals that Scots type pines (Pinus
sylvestris tp.) is the most consumed firewood along the entire archaeological sequence.
Although deciduous Quercus appears from the base of the sequence its use as fuel is
always secondary. These results match those from other studies in low montane
rockshelters containing long sequences of human occupation during the Mesolithic-
Neolithic in the southern central Pyrenees.
The recurrent observation of anatomical wood decay features suggests the main use of deadwood as fuel. First dendro-anthracological results suggest the large use of branches and sometime trunks along the whole archaeological sequence. Small calibre branches are more abundant in the record, probably related to branch shedding of defunct branches. The discrete presence of the largest diameter classes points to the consumption of trunks, possibly taking advantage of the fact that *Pinus sylvestris* L. forests frequently alternate live and dry trees.

No important changes in forest management have been documented between the last hunter-gatherers and the first farmers at Esplugón, neither in terms of species nor of the exploited parts of plants. So, we propose that there was continuity in the patterns of firewood gathering as domestic fuel across the successive short-term occupations of the rockshelter mainly dedicated to the hunting of forest species despite the appearance of the first domesticated elements with the arrival of the Neolithic.

Finally, the application of dendro-anthracological tools to NE Iberia is novel. The development of this research line applied to Mesolithic-Neolithic transition and more recent archaeological contexts as well as to different taxa could be key for understanding different uses of wood, fuelwood procurement and forest management.

Acknowledgements

This study agrees with the objectives to the project *Luz e calor na cova. Uso y aprovechamiento del combustible vegetal por parte de las sociedades cazadoras-recolectoras y primeras productoras del norte de Iberia*. M. Alcolea is funded by a Post-Doc Grant from Xunta de Galicia mod. A (Ref. ED481B 2018/016). The funding of the research has been possible thanks to the R+D Project HAR 2017-85023-P *Gaps and sites. Vacíos y ocupaciones en la Prehistoria de la Cuenca del Ebro* funded by the Ministry of Economy and Competitiveness (Spain) and the research group PRESAGE/CNRS UMR 7209 *Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements* (National Museum of Natural History, France). The authors acknowledge the heads of the archaeological excavation, P. Utrilla (University of Zaragoza, PPVE Reasearch Group), A. Berdejo and A. Obón (*De la Roca al Metal* independent research Group), the access to archaeobotanical materials. The authors
acknowledge M. Lemoine (MNHN) their assistance in dendro-anthracological data curation. We also would like to specially thank the guest editor, Eleni Asouti, the invitation to participate in this special issue.

Figure and table captions

Figures

Figure 1. Location of the Esplugón site (Huesca, Spain), the Station 1 sampled for modern dendrological reference (Secorún) and the main surrounding archaeological sites mentioned in the text. Base: MDT200 IGN (Spanish Government).

Figure 2. Location of the rock-shelter in relation with their current biogeographical framework. Photographs: J.L. Peña and C. Mazo (University of Zaragoza).

Figure 3. West-east stratigraphic profile from the Esplugón site according to Laborda, 2019.

Figure 4. Plotted dates 14C-AMS cal BP from the Esplugón site and GRIP climate curve according to Obón et al., 2019.

Figure 5. Boxplot showing tree-ring width analysis results in the modern dendrological reference dataset Secorún. PINI Pinus nigra, PISY Pinus sylvestris. (Rn) Total values from branches, (T1) Values from 1.30 height trunks, (T2) Values from apical trunks, (Tn) Total values from trunks.

Figure 6. Anthraco-typological key to sort Pinus sylvestris tp. archaeological charcoal fragments into 4 anthraco-groups. Based in Dufraisse et al., 2017 for deciduous oaks.

Figure 7. Anthracological diagram from the Esplugón site (Huesca, NE Iberia).

Figure 8. Condition of wood at the charcoal assemblage from Esplugón by a binominal system based on presence or absence. The percentages of alteration are calculated in relation to the total number of studied fragments. (EM) Early Mesolithic, (LM) Late Mesolithic, (EN) Early Nolithic.

Figure 9. Boxplots showing tree-ring width analysis results in the Esplugón site. Results organized by chronological periods: (EM) Early Mesolithic, (LM) Late Mesolithic, (N) Early Neolithic.

Figure 10. Boxplots showing tree-ring width analysis results in the Esplugón site. Results organized by diametre classes.

Figure 11. Evolution of the parts of plants exploited at the Esplugón site.

Figure 12. Architecture of Pinus sylvestris L. depending on whether it grew isolated (left) or in population (right) according to Riou-Nivert, 2001, 107.
Figure 13. Current vegetation around Esplugón. A. Map based on Forest Map of Spain MFE50 MITECO, black star marks the site location. B. Deadwood accumulated in the Guarga riverbanks because of the presence of large blocks of limestone. July of 2013. C. *Pinus sylvestris* L. currently growing next to the site. Photographs: M. Alcolea.

Figure 14. Diagrams summarizing the results of the application of dendro-anthracological tools to wood charcoal fragments in the Esplugón site. At left, diametric classes obtained by trigonometric method expressed in percentages by fragments and corrected recomposed percentages by ADmodel (available in https://dendrac.mnhn.fr/spip.php?article237). At right, measured fragments grouped in anthraco-groups based in anthraco-typological key showed in Figure 6. The results are grouped in chronocultural periods.

Tables

Table 1. Radiocarbon dating from the Esplugón site in chronological order (OxCal v 4.3.2. IntCal13, Reimer et al., 2013; Bronk Ramsey, 2017). In italics, the dates which are not in agreement with its stratigraphic position, interpreted as intrusions due to bioturbations.

Table 2. Table summarizing applied dendrometric techniques according to Dufraisse et al., same volume.

Table 3. Absolute and relative frequencies of the taxa identified in the Esplugón site. (EM) Early Mesolithic, (LM) Late Mesolithic, (EN) Early Neolithic.

Table 4. Anatomical alterations identified in the Esplugón charcoal assemblage by a binomial system based on presence or absence. The percentages of alteration are calculated in relation to the number of charcoal fragments identified as *Pinus sylvestris* tp. except in the case of vitrification, calculated in relation to the total number of studied fragments. (EM) Early Mesolithic, (LM) Late Mesolithic, (EN) Early Neolithic.

Table 5. Diameter classes of charcoal fragments analysed by dendrometric techniques at Esplugón site. AD% = % corrected recomposed. (EM) Early Mesolithic, (LM) Late Mesolithic, (EN) Early Neolithic.

Table 6. Anthraco-groups to which charcoal fragments analysed at the Esplugón site belong according Dufraisse et al., 2017. (1) Diameter <7 and growth rate <1 mm, (2) diameter <7 and growth rate >1 mm, (3) diameter >7 and growth rate >1 mm, (4) diameter >7 and growth rate >1 mm. (EM) Early Mesolithic, (LM) Late Mesolithic, (EN) Early Neolithic.

Reference list

Alcolea, M. 2015. La secuencia antracológica de Forcas II (Graus, Huesca) y su contribución al conocimiento de la evolución paleoambiental holocena del Prepirineo central. Saldvie 15, 53-63.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Lab. Ref.</th>
<th>Date BP</th>
<th>Date 2s cal BP</th>
<th>Archaeological Layer</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>Beta 338509</td>
<td>5970±30</td>
<td>6893-6731</td>
<td>3 sup</td>
<td>EN</td>
</tr>
<tr>
<td>Bone</td>
<td>Beta 283899</td>
<td>6120±40</td>
<td>7159-6903</td>
<td>4</td>
<td>EN</td>
</tr>
<tr>
<td>Bone</td>
<td>MAMS 30169</td>
<td>6166±23</td>
<td>7163-6997</td>
<td>6</td>
<td>EN</td>
</tr>
<tr>
<td>Bone</td>
<td>MAMS 30168</td>
<td>6282±22</td>
<td>7259-7170</td>
<td>3 sup</td>
<td>LM</td>
</tr>
<tr>
<td>Bone</td>
<td>Beta 313517</td>
<td>6730±40</td>
<td>7668-7514</td>
<td>3 inf</td>
<td>LM</td>
</tr>
<tr>
<td>Bone</td>
<td>MAMS 30166</td>
<td>6781±23</td>
<td>7670-7588</td>
<td>2</td>
<td>LM</td>
</tr>
<tr>
<td>Bone</td>
<td>Beta 306723</td>
<td>6950±50</td>
<td>7926-7681</td>
<td>3 inf</td>
<td>LM</td>
</tr>
<tr>
<td>Bone</td>
<td>MAMS 30167</td>
<td>7355±23</td>
<td>8291-8044</td>
<td>4</td>
<td>LM</td>
</tr>
<tr>
<td>Charcoal</td>
<td>Gra 59632</td>
<td>7620±40</td>
<td>8519-8366</td>
<td>4</td>
<td>LM</td>
</tr>
<tr>
<td>Charcoal</td>
<td>Gra 59634</td>
<td>7715±45</td>
<td>8585-8419</td>
<td>6</td>
<td>LM</td>
</tr>
<tr>
<td>Bone</td>
<td>Beta 306725</td>
<td>7860±40</td>
<td>8934-8547</td>
<td>5</td>
<td>EM</td>
</tr>
<tr>
<td>Charcoal</td>
<td>Gra 59633</td>
<td>8015±45</td>
<td>9021-8717</td>
<td>5</td>
<td>EM</td>
</tr>
<tr>
<td>Bone</td>
<td>Beta 306722</td>
<td>8380±40</td>
<td>9486-9300</td>
<td>6</td>
<td>EM</td>
</tr>
<tr>
<td>Dendro-anthracological parameter</td>
<td>Morpho-anatomical criteria</td>
<td>Dendro-anthracological tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth rate</td>
<td>Tree-ring width</td>
<td>Dendrometry by image analysis software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum diameter</td>
<td>Convergence of ligneous rays</td>
<td>Pith location tool and wood diameter estimation Analysis Diameter model (ADmodel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3 inf</td>
<td>3 sup</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronology</td>
<td>EM</td>
<td>EM</td>
<td>LM</td>
<td>LM</td>
<td>EN</td>
</tr>
<tr>
<td>Taxa</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Juniperus sp.</td>
<td>3</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pinus sylvestris tp.</td>
<td>222</td>
<td>93.7</td>
<td>193</td>
<td>92.7</td>
<td>194</td>
</tr>
<tr>
<td>Prunus sp.</td>
<td>2</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Quercus sp. deciduous</td>
<td>4</td>
<td>1.7</td>
<td>13</td>
<td>5.7</td>
<td>-</td>
</tr>
<tr>
<td>Quercus coccifera/ilex</td>
<td>3</td>
<td>1.3</td>
<td>3</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>Rosaceae/Maloideae</td>
<td>3</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total determinable</td>
<td>237</td>
<td>208</td>
<td>196</td>
<td>223</td>
<td>243</td>
</tr>
<tr>
<td>Undeterminable</td>
<td>7</td>
<td>2.9</td>
<td>28</td>
<td>11.9</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>244</td>
<td>236</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Layer</td>
<td>Chronology</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3 inf</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>EM</td>
<td>EM</td>
<td>LM</td>
<td>LM</td>
<td>EN</td>
</tr>
<tr>
<td>Alterations</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Cells collapse</td>
<td>117</td>
<td>52.7</td>
<td>81</td>
<td>41.9</td>
<td>79</td>
</tr>
<tr>
<td>Compression wood</td>
<td>111</td>
<td>50</td>
<td>83</td>
<td>59.7</td>
<td>135</td>
</tr>
<tr>
<td>Radial cracks</td>
<td>44</td>
<td>19.8</td>
<td>21</td>
<td>10.8</td>
<td>34</td>
</tr>
<tr>
<td>Total Pinus</td>
<td>222</td>
<td>100</td>
<td>193</td>
<td>100</td>
<td>194</td>
</tr>
<tr>
<td>Vitrification</td>
<td>14</td>
<td>5.7</td>
<td>28</td>
<td>11.9</td>
<td>61</td>
</tr>
<tr>
<td>Total fragments</td>
<td>244</td>
<td>100</td>
<td>236</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Diameter class</td>
<td>EM n</td>
<td>%</td>
<td>AD%</td>
<td>LM n</td>
<td>%</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>0-2 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.5</td>
<td>0</td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td>2-4 cm</td>
<td>27</td>
<td>40.3</td>
<td>32.3</td>
<td>32</td>
<td>36.4</td>
</tr>
<tr>
<td>4-7 cm</td>
<td>26</td>
<td>38.8</td>
<td>42.4</td>
<td>33</td>
<td>37.5</td>
</tr>
<tr>
<td>7-10 cm</td>
<td>8</td>
<td>12.0</td>
<td>19.8</td>
<td>9</td>
<td>10.2</td>
</tr>
<tr>
<td>10-14 cm</td>
<td>1</td>
<td>1.5</td>
<td>1.8</td>
<td>5</td>
<td>5.7</td>
</tr>
<tr>
<td>14-20 cm</td>
<td>1</td>
<td>1.5</td>
<td>2.3</td>
<td>2</td>
<td>2.8</td>
</tr>
<tr>
<td>>20 cm</td>
<td>1</td>
<td>1.5</td>
<td>1.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>100</td>
<td>100</td>
<td>88</td>
<td>100</td>
</tr>
<tr>
<td>Chronology</td>
<td>EM</td>
<td></td>
<td>LM</td>
<td></td>
<td>EN</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Anthraco-type</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>53</td>
<td>79.1</td>
<td>62</td>
<td>70.5</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4.5</td>
<td>10</td>
<td>11.4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>11.9</td>
<td>16</td>
<td>18.2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>100</td>
<td>88</td>
<td>100</td>
<td>44</td>
</tr>
</tbody>
</table>
NGRIP δ18O

Calibrated date (calBP)

8.2 kyr event

Cal-14 C 2 Brink Ramsey (2017) < 5 IntCal13 atmospheric curve (Reimer et al. 2013)

R_Date Beta 338509
R_Date Beta 283899
R_Date MAMS 30169
R_Date MAMS 30168
R_Date Beta 313517
R_Date MAMS 30166
R_Date Beta 306723
R_Date MAMS 30167
R_Date Gra 59632
R_Date Gra 59634
R_Date Beta 306725
R_Date Gra 59633
R_Date Beta 306722
<table>
<thead>
<tr>
<th>charcoal-pith distance</th>
<th>tree-ring width</th>
<th>anthraco-groups</th>
<th>charcoal fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter < 7</td>
<td>narrow rings < 1 mm (slow growth)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>large rings > 1 mm (fast growth)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>diameter < 7</td>
<td>narrow rings < 1 mm (slow growth)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>large rings > 1 mm (fast growth)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nivel arqueológico</td>
<td>Nº fragmentos</td>
<td>Pinus sp. sylvestris</td>
<td>Quercus sp. caducifolio</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 inferior</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>244</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FX: Fraxinus sp.
J: Juniperus sp.
PU: Prunus sp.
QP: Quercus sp. perennifolio
RM: Rosaceae/ Melloideae
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: