Complexity reduction over bi-RNN-based Kerr nonlinearity equalization in dual-polarization fiber-optic communications via a CRNN-based approach - Archive ouverte HAL Access content directly
Theses Year : 2022

Complexity reduction over bi-RNN-based Kerr nonlinearity equalization in dual-polarization fiber-optic communications via a CRNN-based approach

Réduction de la complexité de l'égalisation de la non-linéarité Kerr dans les communications sur fibre optique à double polarisation par une approche de réseaux de neurones récurrents convolutifs

(1)
1

Abstract

The impairments arising from the Kerr nonlinearity in optical fibers limit the achievable information rates in fiber-optic communication. Unlike linear effects, such as chromatic dispersion and polarization-mode dispersion, which can be compensated via relatively simple linear equalization at the receiver, the computational complexity of the conventional nonlinearity mitigation techniques, such as the digital backpropagation, can be substantial. Neural networks have recently attracted attention, in this context, for low-complexity nonlinearity mitigation in fiber-optic communications. This Ph.D. dissertation deals with investigating the recurrent neural networks to efficiently compensate for the nonlinear channel impairments in dual-polarization long-haul fiber-optic transmission. We present a hybrid convolutional recurrent neural network (CRNN) architecture, comprising a convolutional neural network (CNN) -based encoder followed by a recurrent layer working in tandem. The CNN-based encoder represents the shortterm channel memory arising from the chromatic dispersion efficiently, while transitioning the signal to a latent space with fewer relevant features. The subsequent recurrent layer is implemented in the form of a unidirectional vanilla RNN, responsible for capturing the long-range interactions neglected by the CNN encoder. We demonstrate that the proposed CRNN achieves the performance of the state-of-theart equalizers in optical fiber communication, with significantly lower computational complexity depending on the system model. Finally, the performance complexity trade-off is established for a number of models, including multi-layer fully-connected neural networks, CNNs, bidirectional recurrent neural networks, bidirectional long short-term memory (bi-LSTM), bidirectional gated recurrent units, convolutional bi-LSTM models, and the suggested hybrid model.
Les dégradations dues à la non-linéarité de Kerr dans les fibres optiques limitent les débits d’information des systèmes de communications. Les effets linéaires, tels que la dispersion chromatique et la dispersion modale de polarisation, peuvent être compensés par égalisation linéaire, de mise en oeuvre relativement simple, au niveau du récepteur. A l’inverse, la complexité de calcul des techniques classiques de réduction de la non-linéarité, telles que la rétro-propagation numérique, peut être considérable. Les réseaux neuronaux ont récemment attiré l’attention, dans ce contexte, pour la mise en oeuvre d’égaliseurs non-linéaires à faible complexité. Cette thèse porte sur l’étude des réseaux neuronaux récurrents pour compenser efficacement les dégradations des canaux dans les transmissions à longue distance multiplexés en polarisation. Nous présentons une architecture hybride de réseaux neuronaux récurrents convolutifs (CRNN), comprenant un encodeur basé sur un réseau neuronal convolutif (CNN) suivie d’une couche récurrente travaillant en tandem. L’encodeur basé sur CNN représente efficacement la mémoire de canal à court terme résultant de la dispersion chromatique, tout en faisant passer le signal vers un espace latent avec moins de caractéristiques pertinentes. La couche récurrente suivante est implémentée sous la forme d’un RNN unidirectionnel de type vanille, chargé de capturer les interactions à longue portée négligées par l’encodeur CNN. Nous démontrons que le CRNN proposé atteint la performance des égaliseurs actuels dans la communication par fibre optique, avec une complexité de calcul significativement plus faible selon le modèle du système. Enfin, le compromis performance-complexité est établi pour un certain nombre de modèles, y compris les réseaux neuronaux multicouches entièrement connectés, les CNN, les réseaux neuronaux récurrents bidirectionnels, les réseaux long short-term memory bidirectionnels (bi-LSTM), les réseaux gated recurrent units bidirectionnels, les modèles bi-LSTM convolutifs et le modèle hybride proposé.
Fichier principal
Vignette du fichier
109993_SHAHKARAMI_2022_archivage.pdf (9 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03842470 , version 1 (07-11-2022)

Identifiers

  • HAL Id : tel-03842470 , version 1

Cite

Abtin Shahkarami. Complexity reduction over bi-RNN-based Kerr nonlinearity equalization in dual-polarization fiber-optic communications via a CRNN-based approach. Networking and Internet Architecture [cs.NI]. Institut Polytechnique de Paris, 2022. English. ⟨NNT : 2022IPPAT034⟩. ⟨tel-03842470⟩
0 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More